1、第六章 数据的分析6.1平均数(一)教学目标: (一)知识目标:1、掌握算术平均数,加权平均数的概念。 2、会求一组数据的算术平均数和加权平均数。 (二)能力目标:1、通过对数据的处理,发展学生初步的统计意识和数据处理的能力。2、根据有关平均数的问题的解决,培养学生的合作意识和能力。 (三)情感目标:1、通过小组合作的活动,培养学生的合作意识和能力。 2、通过解决实际问题,让学生体会数学与生活的密切联系。教学重点:算术平均数,加权平均数的概念及计算。教学难点:加权平均数的概念及计算。教学方法:讨论与启发性。教学过程:一、引入新课: 在某次数学测试后,你想了解自己与班级平均成绩的比较,你先想了解
2、该次数学成绩什么量呢?(引入课题)二、讲授新课: 1、引例:下面是某班30位同学一次数学测试的成绩,各小组讨论如何求出它们的平均分: 95、99、87、90、90、86、99、100、95、87、88、86、94、92、90、95、 87、86、88、86、90、90、99、80、87、86、99、95、92、92 甲小组:X= =91(分) 甲小组做得对吗?有不同求法吗? 乙小组:X= = 91(分) 乙小组的做法可以吗?还有不同求法吗? 丙小组:先取一个数90做为基准a,则每个数分别与90的差为: 5、9、-3、0、0、-4、2、2 求出以上新的一组数的平均数X=1 所以原数组的平均数为X
3、=X+90=91 想一想,丙小组的计算对吗? 2、议一议:问:求平均数有哪几种方法? (1)X= (X1+X2+Xn) 算术平均数 (2)X= (f1+f2+fk=n) 利用加权求平均数 (3)X=X+a 利用基准求平均数 问:以上几种求法各有什么特点呢? 公式(1)适用于数据较小,且较分散。 公式(2)适用于出现较多重复数据。 公式(3)适用于数据较为接近于某一数据。 3、练习:P213 利用计算器 (1)计算两支球队的平均身高,哪支球队队员的身材更为高大? (2)计算两支球队的平均年龄,哪支球队队员的年龄更为年轻? 4、加权平均数: 例1,某广告公司欲招聘广告策划人员一名,对A,B,C三名
4、候选人进行了三项素质测试,他们的各项测试成绩如下表所示: (1)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用? (2)根据实际需要,公司将创新,综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时谁将被录用? 小结:实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而,在计算这组数据的平均数时,往往给每个数据一个“权”,如例1中4,3,1分别是创新、综合知识、语言三项测试成绩的权,而称 为A的三项测试成绩的加权平均数。 三、练一练:P216 随堂练习 四、小结:通过本节课的学习,你有哪些收获与体会? 五、作业:书P220 习题 8.1教后感:通过小组合作的活动
5、,让学生体会数学与生活的密切联系, 掌握算术平均数,加权平均数的概念,培养学生的合作意识和能力。 6.1平均数(二)教学目标: (一)知识目标: 1、会求加权平均数,并体会权的差异对结果的影响。 2、理解算术平均数和加权平均数的联系与区别,并能利用它们解决一些现实问题。 (二)能力目标: 1、通过利用平均数解决实际问题,发展学生的数学应用能力。 2、通过探索算术平均数和加权平均数的联系和区别,发展学生的求同和求异的思维。 (三)情感目标:通过解决实际问题,体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。教学重点:加权平均数中权对结果的影响及与算术平均数的联
6、系与区别。教学难点:探索算术平均数和加权平均数的联系和区别。教学方法:探讨教学教学过程:一、引入新课: 1、什么是算术平均数?加权平均数? 2、算术平均数与加权平均数有什么联系与区别吗?(引入)二、讲授新课: 1、例题讲解: 我校对各个班级的教室卫生情况的考查包括以下几项:黑板、门窗、桌椅、地面。 一天,三个班级的各项卫生成绩分别如下: (1)小明将黑板、门窗、桌椅、地面这四项得分依次按15%、10%、35%、40%的比例计算各班的卫生成绩,那么哪个班的成绩最高? (2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案,根据你的方案,哪一个班的卫生成绩最高?与同伴进行交流。
7、解:(1)一班的卫生成绩为: 9515%+9010%+9035%+8540%=88.75 二班的卫生成绩为: 9015%+9510%+8535%+9040%=88.75 三班的卫生成绩为: 8515%+9010%9535%+9040%=91 因此,三班的成绩最高。 (2)分组讨论交流 小结:以上四项所占的比例不同,即权有差异,得出的结果就会不同,也就是说权的差异对结果有影响。 2、议一议: 小颖家去年的饮食支出为3600元,教育支出为1200元,其他支出为7200元,小颖家今年的这三项支出依次比去年增长39%,3%,6%,小颖家今年的总支出比去年增长的百分数是多少? 问:如何求今年的总支出比去
8、年总支出的百分比呢? 百分比=今年总支出去年总支出 去年总支出 以下是小明和小亮的两种解法?谁做得对? 小明: (9%+30%+6%)=15% 小亮: =9.3% 由于小颖家去年的饮食、教育和其他三项支出金额不等,因此,饮食、教育和其他三项支出的增长率“地位”不同,它们对总支出增长率的“影响”不同,不能简单地用算术平均数计算总支出的增长率,而应将这三项支出金额3600,1200,7200分别视为三项支出增长率的“权”,从而总支出的增长率为小美的求法是对的。三、课堂练习: 1、小明骑自行车的速度是15千米/时,步行的速度是5千米/时。 (1)如果小明先骑自行车1小时,然后又步行了1小时,那么他的平均速度是多少? (2)如果小明先骑自行车2小时,然后步行了3小时,那么他的平均速度是多少? 2、某市七月中旬各天的最高气温统计如下: 求该市七月中旬的最高气温的平均数。 四、小结 1、加权平均数受什么因素的影响? 权的差异对结果有影响。 2、算术平均数与加权平均数有哪些联系与区别?五、作业:P223 习题8.2 试一试教后感:过解决实际问题,体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。会求加权平均数,并体会权的差异对结果的影响。