ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:131.50KB ,
资源ID:761419      下载积分:11 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/761419.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(上海初一下册数学知识点整理(沪教版).doc)为本站上传会员【胜****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

上海初一下册数学知识点整理(沪教版).doc

1、精品教育第十二章 实数第一节 实数的概念12.1 实数的概念A无限不循环小数叫做无理数。B只有符号不同的两个无理数,它们互为相反数。C有理数和无理数统称为实数。 正 有理数 有理数 零 有限小数或无限循环小数 负有理数 实数 正无理数 无理数 无限不循环小数负无理数 (1).自然数(小学):数出物体个数的这样的数,如1、2、3、4、5.叫做自然数。(2).整数(小学):0和自然数叫做整数。(3)整数(中学):正整数、负整数和0统称为整数。(4)正数:大于0的数叫做正数。(5)负数:小于0的数叫做负数。(6)分数(小学):形如1/2、5/3、7(3/5)这样的数叫做分数。(7)分数(中学):有限

2、小数和无限循环小数统称为分数。(8)有理数:整数和分数统称为有理数。(9)无理数:无限不循环小数叫做无理数,具体表示方法为2、3这样的数。(10)实数:有理数与无理数统称为实数。第二节 数的开方12.2 平方根和开平方A如果一个的平方等于a,那么这个数叫做a的平方根。求一个数a的平方根的运算叫做开平方,a叫做被开方数。(定义:如果a=a,则a叫做a的平方根,记作“a”(a称为被开方数)。B正数a的两个平方根可以用“”表示,期中表示a的正平方根(又叫算术平方根),读作“根号a”; 表示a的负平方根,读作“负根号a”。开平方和平方互为逆运算: 当 a0时 ()2= a ()2= a (平方根等于本

3、身的只有0 ) 当 a0时 = a = a 当 a0时 = a零的平方根记作,=0注:一个正数的平方根的平方等于这个数。一个正(负)数的平方的正平方根等于这个数(这个数的相反数)。性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。 12.3 立方根和开立方A如果一个数的立方等于a,那么这个数叫做a的立方根,用“”表示,读作“三次根号a”,a叫做被开方数,“3”叫做根指数。求一个数a的立方根的运算叫做开立方。(定义:如果=a,则x叫做a的立方根,记作“”(a称为被开方数)。B任意一个实数都有立方根,而且只有一个

4、立方根。 =0 ( )3= a = a、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。12.4 n次方根A如果一个数的n次方(n是大于1的整数)等于a,那么这个数叫做a的n次方根,当n为奇数时,这个数为a的奇次方根;当n为偶数时,这个数叫做a的偶次方根。求一个数a的n次方根的运算叫做开n次方,a叫做被开方数,n叫做根指数。B实数a的奇次方根有且只有一个,用“”表示。其中被开方数a是任意一个实数,根指数n是大于1的奇数。正数a的偶次方根有两个,它们互为相反数,正n次方根用“”表示,负n次方根用“-”表示。其中被开方数a0,根指数n是正偶数(当n=2时,在中省略n)。负数的偶次

5、方根不存在。零的n次方根等于零。第三节 实数的运算12.5 用数轴上的点表示实数A一个实数在数轴上所对应的点到原点的距离叫做这个数的绝对值。实数a的绝对值记作。绝对值相等、符号相反的两个数叫做互为相反数,零的相反数是零,非零实数a的相反数是-a。B负数小于零,零小于正数。两个正数,绝对值大的数比较大;两个负数,绝对值大的数较小。从数轴上看,右边的点所表示的数总比左边的点所表示的数大。12.6 实数的运算实数轴:数轴上的每一个点都对应唯一的实数。数轴上两点A、B对应的数分别是a、b,那么两点距离:AB=|ab|(11)实数的运算性质:设 a0 , b0 则 = = 第四节 分数指数幂12.7 分

6、数指数幂A我们规定分数指数幂:(), (), 其中m、n为正整数,n1。B整数指数幂和分数指数幂统称为有理数指数幂。C有理数指数幂的运算性质:设a0,b0,p、q为有理数,那么(1)(2)(3).第十三章 相交线 平行线第一节 相交线13.1 邻补角、对顶角13.2 垂线A如果两条直线的夹角为直角,那么就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。B在平面内经过直线上或直线外的一点作已知直线的垂线可以作一条,并且只能作一条。C联结直线外一点与直线上各点的所有线段中,垂线段最短。D点到直线的距离直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离。13.3

7、同位角、内错角、同旁内角第二节 平行线13.4 平行线的判定A两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。B经过直线外的一点,有且只有一条直线与已知直线平行。C两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。D两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。13.5 平行线的性质A两条平行线被第三条直线所截,同位角相等。B两条平行线被第三条直线所截,内错角相等。C两条平行线被第三条直线所截,同旁内角互补。D如果两条直线都与第三条直线平行,那么这两条直线也互相平行。E两条平行线中,任意一条直线上的所有点到另一条直线的距离都是一个定值,这个定值叫做这

8、两条平行线间的距离。10.1相交线:邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。平行线:在同一平面内,不相交的两条直线叫做平行线。同位角、内错角、同旁内角:同位角:1与5像这样具有相同位置关系的一对角叫做同位角。内错角:2与6像这样的一对角叫做内错角。同旁内角:2与5像这样的一对角叫做同旁内角。对顶角的性质:对顶角相等。补充;垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。性质2:连接直线外一点与直线上

9、各点的所有线段中,垂线段最短。平行公理:经过直线外一点有且只有一条直线与已知直线平行。平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。10.2平行线的判定:判定1:同位角相等,两直线平行。判定2:内错角相等,两直线平行。判定3:同旁内角相等,两直线平行。10.3平行线的性质:性质1:两直线平行,同位角相等。性质2:两直线平行,内错角相等。性质3:两直线平行,同旁内角互补。10.4平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。平

10、行线的判定:1同位角相等, 两直线平行2内错角相等, 两直线平行3同旁内角互补,两直线平行平行线的性质: 1两直线平行, 同位角相等2两直线平行; 内错角相等3两直线平行,同旁内角互补(平行的传递性) ab bc ac第十四章 三角形第一节 三角形的有关概念与性质14.1 三角形的有关概念A三角形任意两边的和大于第三边。B三角形的高、中线、角平分线。C、三角形的分类:锐角三角形、直角三角形、钝角三角形。D、三边互不相等的三角形叫做不等边三角形;有两边相等的三角形叫做等腰三角形;三遍都相等的三角形叫做等边三角形。14.2 三角形的内角和A三角形的内角和等于180。B三角形的一个外角等于与它不相邻

11、的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角。C三角形的外角和等于360。第二节 全等三角形14.3 全等三角形的概念与性质A能够重合的两个图形叫做全等形。B全等三角形的对应边相等,对应角相等。14.4 全等三角形的判定A在两个三角形中,如果有两条边及它们的夹角对应相等,那么这两个三角形全等(SAS)。B在两个三角形中,如果有两个角及其中一个角的对边对应相等,那么这两个三角形全等(AAS)。C在两个三角形中,如果有三条边对应相等,那么这两个三角形全等(SSS)。第三节 等腰三角形14.5 等腰三角形的性质A等腰三角形的两个底角相等,简称等边对等角。B等腰三角形的顶角平分线、底边

12、上的中线、底边上的高互相重合,简称三线合一。C等腰三角形是轴对称图形,它的对称轴是顶角平分线所在的直线。14.6 等腰三角形的判定A如果一个三角形有两个角相等,那么这两个角所对的边也相等,这个三角形是等腰三角形,简称等角对等边。14.7 等边三角形A有一个内角等于60的等腰三角形是等边三角形。第十五章 平面直角坐标系第一节 平面直角坐标系15.1平面直角坐标系A经过点A(a,b)且垂直于x轴的直线可以表示为直线x=a,经过点A(a,b)且垂直于y轴的直线可以表示为直线y=b。第二节 直角坐标平面内点的运动15.2 直角坐标平面内的运动A在直角坐标平面内,平行于x轴的直线上的两点A(x1,y)、B(x2,y)的距离AB=;平行于y轴的直线上的两点C(x,y1)、D(x,y2)的距离CD=。B一般地,如果点M(x,y)沿着与x轴或y轴平行的方向平移m(m0)个单位,那么 向右平移所对应的点的坐标为(x+m,y);向左平移所对应的点的坐标为(x-m,y); 向上平移所对应的点的坐标为(x,y+m);向下平移所对应的点的坐标为(x,y-m)。C一般地,在直角坐标平面内,与点M(x,y)关于x轴对称的点的坐标为(x,-y);与点M(x,y)关于y轴对称的点的坐标为(-x,y)。D一般地,在直角坐标平面内,与点M(x,y)关于原点对称的点的坐标为(-x,-y)。-可编辑-

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服