1、二次函数教学目标: 理解二次函数的概念,掌握二次函数yax2的图象与性质;会用描点法画抛物线,能确定抛物线的顶点、对称轴、开口方向;能较熟练地由抛物线yax2经过适当平移得到ya(xh)2k的图象。重点:用配方法求二次函数的顶点、对称轴,由图象概括二次函数yax2图象的性质。难点:二次函数图象的平移。教学过程:一、结合例题,强化练习,梳理知识点1二次函数的概念,二次函数yax2 (a0)的图象性质。例1:已知函数是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点这时当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是什么?这时当
2、x为何值时,y随x的增大而减小? 学生活动:学生四人一组进行讨论,并回顾例题所涉及的知识点,让学生代表发言分析解题方法,以及涉及的知识点。 抛物线的增减性要结合图象进行分析,要求学生画出草图,渗透数形结合思想,进行观察分析。2.强化练习;已知函数是二次函数,其图象开口方向向下,则m_,顶点为_,当x_0时,y随x的增大而增大,当x_0时,y随x的增大而减小。3.用配方法求抛物线的顶点,对称轴;抛物线的画法,平移规律,例2:用配方法求出抛物线y3x26x8的顶点坐标、对称轴,并画出函数图象,说明通过怎样的平移,可得到抛物线y3x2。 学生活动:小组讨论配方方法,确定抛物线画法的步骤,探索平移的规
3、律。充分讨论后让学生代表归纳解题方法与思路。4.教师归纳点评: (1)教师在学生合作讨论基础上强调配方的方法及配方的意义,指出抛物线的一般式与顶点式的互化关系: yax2bxcya(x)2 (2)强调利用抛物线的对称性进行画图,先确定抛物线的顶点、对称轴,利用对称性列表、描点、连线。 (3)抛物线的平移抓住关键点顶点的移动。5.综合应用。 例3:如图,已知直线AB经过x轴上的点A(2,0),且与抛物线yax2相交于B、C两点,已知B点坐标为(1,1)。 (1)求直线和抛物线的解析式;(2)如果D为抛物线上一点,使得AOD与OBC的面积相等,求D点坐标。6. 强化练习: (1)抛物线yx2bxc
4、的图象向左平移2个单位。再向上平移3个单位,得抛物线yx22x1,求:b与c的值。 (2)通过配方,求抛物线yx24x5的开口方向、对称轴及顶点坐标再画出图象。(3)函数yax2(a0)与直线y2x3交于点A(1,b),求:a和b的值抛物线yax2的顶点和对称轴; x取何值时,二次函数yax2中的y随x的增大而增大, 求抛物线与直线y2两交点及抛物线的顶点所构成的三角形面积。二、课堂小结 1让学生反思本节教学过程,归纳本节课复习过的知识点及应用。三、作业: 填空。 1若二次函数y(m1)x2m22m3的图象经过原点,则m_。 2函数y3x2与直线ykx3的交点为(2,b),则k_,b_。 3抛物线y(x1)22可以由抛物线yx2向_方向平移_个单位,再向_方向平移_个单位得到。 4用配方法把yx2x化为ya(xh)2k的形式为y_,其开口方向_,对称轴为_,顶点坐标为_。