ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:107KB ,
资源ID:7613344      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7613344.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(八年级数学下册 5.4 分式方程的解法(第2课时)教案 (新版)北师大版-(新版)北师大版初中八年级下册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

八年级数学下册 5.4 分式方程的解法(第2课时)教案 (新版)北师大版-(新版)北师大版初中八年级下册数学教案.doc

1、分式方程的解法1在进一步理解分式方程意义的基础上,掌握分式方程的一般解法;(重点)2了解解分式方程可能会产生增根,掌握解分式方程一定要验根及验根方法(难点)一、情境导入方程与以前学习的方程有什么不同?怎样解这样的方程?二、合作探究探究点一:分式方程的解法【类型一】 解分式方程 解方程:(1);(2) 3.解析:分式方程两边同乘以最简公分母,把分式方程转化为整式方程求解,注意验根解:(1)方程两边同乘x(x2),得5(x2)7x,5x107x,2x10,解得x5,检验:把x5代入最简公分母,得x(x2)0, x5是原方程的解;(2)方程两边同乘最简公分母(x2),得1x13(x2),解得x2,检

2、验:把x2代入最简公分母,得x20,原方程无解方法总结:解分式方程的步骤:去分母;解整式方程;检验;写出方程的解注意检验有两种方法,一是代入原方程,二是代入去分母时乘的最简公分母,一般是代入公分母检验变式训练:见学练优本课时练习“课后巩固提升”第7题【类型二】 由分式方程的解确定字母的取值范围 关于x的方程1的解是正数,则a的取值范围是_解析:去分母得2xax1,解得xa1,关于x的方程1的解是正数,x0且x1,a10且a11,解得a1且a2,a的取值范围是a1且a2.方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0.变式训练:见学

3、练优本课时练习“课后巩固提升”第4题探究点二:分式方程的增根【类型一】 求分式方程的增根 若方程有增根,则增根为()A0 B2 C0或2 D1解析:最简公分母是x(x2),方程有增根,则x(x2)0,x0或x2.去分母得3xa(x2)4,当x0时,2a4,a2;当x2时,64不成立,增根只能为x0,故选A.方法总结:增根是使分式方程的分母为0的根,所以判断增根只需让分式方程的最简公分母为0,注意应舍去不合题意的解变式训练:见学练优本课时练习“课堂达标训练”第7题【类型二】 分式方程有增根,求字母的值 如果关于x的分式方程1有增根,则m的值为()A3 B2C1 D3解析:方程两边同乘以x3,得2

4、x3m.原方程有增根,x30,即x3.把x3代入,得m2.故选B.方法总结:增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值变式训练:见学练优本课时练习“课堂达标训练”第8题【类型三】 分式方程无解,求字母的值 若关于x的分式方程无解,求m的值解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根解:方程两边都乘以(x2)(x2),得2(x2)mx3(x2),即(m1)x10.当m10时,此方程无解,此时m1;方程有增根,则x2或x2,当x2时,代入(m1)x10得(m1)210,m4;当x2时,代

5、入(m1)x10得(m1)(2)10,解得m6,m的值是1,4或6.方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数变式训练:见学练优本课时练习“课后巩固提升”第5题三、板书设计1分式方程的解法方程两边同乘以最简公分母,化为整式方程求解,再检验2分式方程的增根(1)解分式方程为什么会产生增根;(2)分式方程检验的方法这节课主要是通过对比有分数系数的整式方程的解法来学习分式方程的解法,从而归纳出分式方程的基本解题步骤在教学过程中要着重讲解分式方程为什么要检验,要让学生理解增根的由来,从而牢记分式方程在解题后要进行检验,避免解题出错在完成解题步骤归纳之后,通过例题与练习让学生在出错中找到正确的解法,让学生自己归纳理解解题时容易出错的地方,防止犯错.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服