ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:176KB ,
资源ID:7612330      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7612330.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(辽宁省沈阳市第四十五中学八年级数学上册 4.3 一次函数的图象教学设计(1) (新版)北师大版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

辽宁省沈阳市第四十五中学八年级数学上册 4.3 一次函数的图象教学设计(1) (新版)北师大版.doc

1、4.3一次函数的图象(1) 教学设计 一、学生起点分析八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系二、教学任务分析 一次函数的图象是义务教育课程标准北师大实验教科书八年级(上)第六章一次函数的第三节本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质本课时是第一课时,教材注重学生

2、在探索过程的体验,注重对函数与图象对应关系的认识 为此本节课的教学目标是:1了解一次函数的图象是一条直线, 能熟练作出一次函数的图象2经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线3已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力4理解一次函数的代数表达式与图象之间的一一对应关系教学重点是:初步了解作函数图象的一般步骤:列表、描点、连线教学难点是:理解一次函数的代数表达式与图象之间的一一对应关系三、教学过程设计本节课设计了七个教学环节:第一环节:创设情境 引入课题;第二环节:画一次函数的图象;第三环节:动手操作,深化探索;第四环节:巩固练习,深化理解;第五

3、环节:课时小结;第六环节:拓展探究;第七环节:作业布置第一环节:创设情境 引入课题内容: Ot(分)S(米)801一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗? S=80t(t0)下面的图象能表示上面问题中的S与t的关系吗?我们说,上面的图象是函数S=80t(t0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。目的:通过学生比较熟悉的生活情景,让学生在写函数关系式和认识图象的过程中,初步感受函数与图象的联系,激发其学习的欲望效果:学生通过对上述情景的分析,初步

4、感受到函数与图象的联系,激发了学生的学习欲望第二环节:画正比例函数的图象内容:首先我们来学习什么是函数的图象?把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph)例1 请作出正比例函数y=2x的图象解:列表:x-2-1012y=2x-4-2024描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点连线:把这些点依次连结起来,得到y=2x的图象由例1我们发现:作一个函数的图象需要三个步骤:列表,描点,连线目的:通过本环节的学习,让学生明确作一个函数图象的一般步骤,能做出一个函数的图象,同时感

5、悟正比例函数图象是一条直线效果:学生通过学习,掌握了作一个函数图象的一般方法,能作出一个函数的图象,同时感悟到正比例函数图象是一条直线第三环节:动手操作,深化探索内容:做一做(1)作出正比例函数y=3x的图象(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y=3x请同学们以小组为单位,讨论下面的问题,把得出的结论写出来(1)满足关系式y=3x的x,y所对应的点(x,y)都在正比例函数y=3x的图象上吗?(2)正比例函数y=3x的图象上的点(x,y)都满足关系式y=3x吗?(3)正比例函数y=kx的图象有什么特点?明晰由上面的讨论我们知道:正比例函数的代数表达式与

6、图象是一一对应的,即满足正比例函数的代数表达式的x,y所对应的点(x,y)都在正比例函数的图象上;正比例函数的图象上的点(x,y)都满足正比例函数的代数表达式正比例函数y=kx的图象是一条直线,以后可以称正比例函数y=kx的图象为直线y=kx议一议既然我们得出正比例函数y=kx的图象是一条直线那么在画正比例函数图象时有没有什么简单的方法呢?因为“两点确定一条直线 ”,所以画正比例函数y=kx的图象时可以只描出两个点就可以了因为正比例函数的图象是一条过原点(0,0)的直线,所以只需再确定一个点就可以了,通常过(0,0),(1,k)作直线.例2 在同一直角坐标系内作出y=x,y=3x,y=-x,y

7、=-4x的图象解:列表x01y=x01y=3x03y=-x0-y=4x0-4过点(0,0)和(1,1)作直线,则这条直线就是y=x的图象过点(0,0)和(1,3)作直线,则这条直线就是y=3x的图象过点(0,0)和(1,-)作直线,则这条直线就是y=-x的图象过点(0,0)和(1,-4)作直线,则这条直线就是y=-4x的图象目的:做一做“作出这几个正比例函数的图象”,意在让学生进一步熟悉如何作一个正比例函数的图象,同时要求学生通过这几个函数的图象,分析正比例函数图象的性质,以及k的绝对值大小与直线倾斜程度的关系.效果:学生通过作出正比例函数的图象,明确了作函数图象的一般方法在探究函数与图象的对

8、应关系中加深了理解,并能很快地作出正比例函数的图象议一议上述四个函数中,随着x的增大,y的值分别如何变化?在正比例函数y=kx中,当k0时,图象在第一、三象限,y的值随着x值的增大而增大(即从左向右观察图象时,直线是向上倾斜的);当k0时, 图象在第二、四象限, y的值随着x值的增大而减小 (即从左向右观察图象时,直线是向下倾斜的).请你进一步思考:(1)正比例函数y=x和y=3x中,随着x值的增大y的值都增加了,其中哪一个增加得更快?你能说明其中的道理吗?(2)正比例函数y=-x和y=-4x中,随着x值的增大y的值都减小了,其中哪一个减小得更快?你是如何判断的?我们发现:越大,直线越靠近y轴

9、。第四环节:巩固练习,深化理解内容:练习1:在同一直角坐标系中分别作出y=x与y=-x的图象练习2:当时,与的函数解析式为,当时,与的函数解析式为,则在同一直角坐标系中的图象大致为( )练习3:对于函数的两个确定的值、来说,当时,对应的函数值与 的关系是( )A. B. C. D. 无法确定目的:这里的三个练习题,一是让学生熟练正比例函数图象的作法,二是明确正比例函数图象的性质,要注意自变量的取值范围。 效果:学生通过练习,进一步熟练了正比例函数图象的作法,对正比例函数和正比例函数图象的一般特征有了清楚的认识第五环节:课时小结内容:本节课我们通过对正比例函数图象的研究,掌握了以下内容:(1)函

10、数与图象之间是一一对应的关系;(2)正比例函数的图象是一条经过原点的直线(3)作正比例函数图象时,只取原点外的另一个点,就能很快作出目的:让学生在回忆的过程中,进一步加深对正比例函数图象的理解,同时对本节所学知识有一个总结性的认识效果:学生通过对本节学习的回顾和小结,对所学知识更清楚,抓住了重点,明确了关键第六环节:拓展探究内容:如图所示,你认为下列结论中正确的是( )A. B. C. D. 目的:对学有余力的学生,能进一步提高,让他们的学习活动深入下去,同时为以后学习正比例函数图象的应用奠定基础效果:学生通过对上面问题的探究,对正比例函数图象的认识更深入第七环节:作业布置习题4.3 1、2、3、4题,5题选做。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服