ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:286.50KB ,
资源ID:7612186      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7612186.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(春八年级数学下册 18.2 平行四边形的判定教案 (新版)华东师大版-(新版)华东师大版初中八年级下册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

春八年级数学下册 18.2 平行四边形的判定教案 (新版)华东师大版-(新版)华东师大版初中八年级下册数学教案.doc

1、18.2.1 平行四边形的判定(一)一、 教学目标: 1在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法 2会综合运用平行四边形的判定方法和性质来解决问题 3培养用类比、逆向联想及运动的思维方法来研究问题二、重点、难点1 重点:平行四边形的判定方法及应用2 难点:平行四边形的判定定理与性质定理的灵活应用三、例题的意图分析 本节课安排了3个例题,例1是教材P96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题例3是一道

2、拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由四、课堂引入1欣赏图片、提出问题展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?2【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?让学生利用手中的学具硬纸板条通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭

3、建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。平行四边形判定方法2 对角线互相平分的四边形是平行四边形。五、例习题分析例1(教材P96例3)已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF求证:四边形BFDE是平行四边形分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明(证明过程参看教材)问;你还有其它的证明方法吗?比较一下,哪种证明方法简单例2(补充)

4、已知:如图,ABBA,BCCB, CAAC求证:(1) ABCB,CABA,BCAC;(2) ABC的顶点分别是BCA各边的中点证明:(1) ABBA,CBBC, 四边形ABCB是平行四边形ABCB(平行四边形的对角相等)同理CABA,BCAC(2) 由(1)证得四边形ABCB是平行四边形同理,四边形ABAC是平行四边形 ABBC, ABAC(平行四边形的对边相等) BCAC同理 BACA, ABCBABC的顶点A、B、C分别是BCA的边BC、CA、AB的中点 例3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形你能在图中找出所有的平行四边形吗?并说说你的理由 解:有6个平行四

5、边形,分别是ABOF,ABCO, BCDO,CDEO,DEFO,EFAO 理由是:因为正ABO正AOF,所以AB=BO,OF=FA根据 “两组对边分别相等的四边形是平行四边形”,可知四边形ABCD是平行四边形其它五个同理 六、随堂练习1如图,在四边形ABCD中,AC、BD相交于点O,(1)若AD=8cm,AB=4cm,那么当BC=_ _cm,CD=_ _cm时,四边形ABCD为平行四边形;(2)若AC=10cm,BD=8cm,那么当AO=_ _cm,DO=_ _cm时,四边形ABCD为平行四边形2已知:如图,ABCD中,点E、F分别在CD、AB上,DFBE,EF交BD于点O求证:EO=OF3灵

6、活运用课本P89例题,如图:由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察,分析发现:第4个图形中平行四边形的个数为_ _ (6个)第8个图形中平行四边形的个数为_ _ (20个)七、课后练习1(选择)下列条件中能判断四边形是平行四边形的是( ) (A)对角线互相垂直 (B)对角线相等 (C)对角线互相垂直且相等 (D)对角线互相平分2已知:如图,ABC,BD平分ABC,DEBC,EFBC, 求证:BE=CF18.2.2 平行四边形的判定(二)一、 教学目标: 1掌握用一组对边平行且相等来判定平行四边形的方法 2会综合运用平行四边形的四种判定方法和性质来证明问题 3通

7、过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力二、 重点、难点1重点:平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法2难点:平行四边形的判定定理与性质定理的综合应用 三、例题的意图分析 本节课的两个例题都是补充的题目,目的是让学生能掌握平行四边形的第三种判定方法和会综合运用平行四边形的判定方法和性质来解决问题学生程度好一些的学校,可以适当地自己再补充一些题目,使同学们会应用这些方法进行几何的推理证明,通过学习,培养学生分析问题、寻找最佳解题途径的能力四、课堂引入1 平行四边形的性质;2 平行四边形的判定方法;3 【探究】 取两根等长的木条AB、CD,

8、将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?结论:一组对边平行且相等的四边形是平行四边形五、例习题分析例1(补充)已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF 分析:证明BE=DF,可以证明两个三角形全等,也可以证明四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单 证明: 四边形ABCD是平行四边形, ADCB,AD=CD E、F分别是AD、BC的中点, DEBF,且DE=AD,BF=BC DE=BF 四边形BEDF是平行四边形(一组对边平行且相等的四边形平行四边形) BE=DF 此题综合运用了平行四边形的性质和判定,先

9、运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路例2(补充)已知:如图,ABCD中,E、F分别是AC上两点,且BEAC于E,DFAC于F求证:四边形BEDF是平行四边形分析:因为BEAC于E,DFAC于F,所以BEDF需再证明BE=DF,这需要证明ABE与CDF全等,由角角边即可 证明: 四边形ABCD是平行四边形, AB=CD,且ABCD BAE=DCF BEAC于E,DFAC于F, BEDF,且BEA=DFC=90 ABECDF (AAS) BE=DF 四边形BEDF是平行四

10、边形(一组对边平行且相等的四边形平行四边形)六、课堂练习1(选择)在下列给出的条件中,能判定四边形ABCD为平行四边形的是( )(A)ABCD,AD=BC (B)A=B,C=D (C)AB=CD,AD=BC (D)AB=AD,CB=CD2已知:如图,ACED,点B在AC上,且AB=ED=BC, 找出图中的平行四边形,并说明理由3已知:如图,在ABCD中,AE、CF分别是DAB、BCD的平分线求证:四边形AFCE是平行四边形七、课后练习1判断题:(1)相邻的两个角都互补的四边形是平行四边形; ( )(2)两组对角分别相等的四边形是平行四边形; ( )(3)一组对边平行,另一组对边相等的四边形是平

11、行四边形; ( )(4)一组对边平行且相等的四边形是平行四边形; ( )(5)对角线相等的四边形是平行四边形; ( )(6)对角线互相平分的四边形是平行四边形 ( )2延长ABC的中线AD至E,使DE=AD求证:四边形ABEC是平行四边形3在四边形ABCD中,(1)ABCD;(2)ADBC;(3)ADBC;(4)AOOC;(5)DOBO;(6)ABCD选择两个条件,能判定四边形ABCD是平行四边形的共有_对(共有9对)18.2.3 平行四边形的判定三角形的中位线(三)一、 教学目标:1 理解三角形中位线的概念,掌握它的性质2 能较熟练地应用三角形中位线性质进行有关的证明和计算3经历探索、猜想、

12、证明的过程,进一步发展推理论证的能力4能运用综合法证明有关三角形中位线性质的结论理解在证明过程中所运用的归纳、类比、转化等思想方法二、 重点、难点1重点:掌握和运用三角形中位线的性质2难点:三角形中位线性质的证明(辅助线的添加方法) 三、例题的意图分析 例1是教材P98的例4,这是三角形中位线性质的证明题,教材采用的是先证明后引出概念与性质的方法,它一是要练习巩固平行四边形的性质与判定,二是为了降低难度,因此教师们在教学中要把握好度建议讲完例1,引出三角形中位线的概念和性质后,马上做一组练习,以巩固三角形中位线的性质,然后再讲例2例2是一道补充题,选自老教材的一个例题,它是三角形中位线性质与平

13、行四边形的判定的混合应用题,题型挺好,添加辅助线的方法也很巧,结论以后也会经常用到,可根据学生情况适当的选讲例2教学中,要把辅助线的添加方法讲清楚,可以借助与多媒体或教具四、课堂引入1 平行四边形的性质;平行四边形的判定;它们之间有什么联系?2 你能说说平行四边形性质与判定的用途吗?(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题)3创设情境实验:请同学们思考:将任意一个三角形分成四

14、个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的?五、例习题分析 例1(教材P98例4) 如图,点D、E、分别为ABC边AB、AC的中点,求证:DEBC且DE=BC 分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形 方法1:如图(1),延长DE到F,使EF=DE,连接CF,由ADECFE,可得ADFC,且AD=FC,因此有BDFC,BD=FC,所以四边形BCFD是平行四边形所以DFBC,DF=B

15、C,因为DE=DF,所以DEBC且DE=BC(也可以过点C作CFAB交DE的延长线于F点,证明方法与上面大体相同) 方法2:如图(2),延长DE到F,使EF=DE,连接CF、CD和AF,又AE=EC,所以四边形ADCF是平行四边形所以ADFC,且AD=FC因为AD=BD,所以BDFC,且BD=FC所以四边形ADCF是平行四边形所以DFBC,且DF=BC,因为DE=DF,所以DEBC且DE=BC定义:连接三角形两边中点的线段叫做三角形的中位线【思考】:(1)想一想:一个三角形的中位线共有几条?三角形的中位线与中线有什么区别? (2)三角形的中位线与第三边有怎样的关系? (答:(1)一个三角形的中

16、位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同中位线是中点与中点的连线;中线是顶点与对边中点的连线 (2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半)三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半拓展利用这一定理,你能证明出在设情境中分割出来的四个小三角形全等吗?(让学生口述理由)例2(补充)已知:如图(1),在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点求证:四边形EFGH是平行四边形分析:因为已知点E、F、G、H分别是线段的中点,可以设法应用三角形中位线性质找到四边形EFGH的边之间的关系由于四边形的

17、对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC或BD,构造“三角形中位线”的基本图形后,此题便可得证证明:连结AC(图(2),DAG中, AH=HD,CG=GD, HGAC,HG=AC(三角形中位线性质)同理EFAC,EF=AC HGEF,且HG=EF 四边形EFGH是平行四边形此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形六、课堂练习1(填空)如图,A、B两点被池塘隔开,在AB外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN=20 m,那么A、B两点的距离是 m,理由是 2已知:三角形的各边分别为8cm 、10cm和12cm ,求连结各边中点所成三角形的周长3如图,ABC中,D、E、F分别是AB、AC、BC的中点,(1)若EF=5cm,则AB= cm;若BC=9cm,则DE= cm;(2)中线AF与DE中位线有什么特殊的关系?证明你的猜想七、课后练习1(填空)一个三角形的周长是135cm,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是 cm2(填空)已知:ABC中,点D、E、F分别是ABC三边的中点,如果DEF的周长是12cm,那么ABC的周长是 cm3已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点求证:四边形EFGH是平行四边形

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服