1、解直角三角形(3)教学目标:1、进一步掌握解直角三角形的方法;2、比较熟练的应用解直角三角形的知识解决与仰角、俯角有关的实际问题;3、培养学生把实际问题转化为数学问题的能力。教学重点:解直角三角形在测量方面的应用;教学难点:选用恰当的直角三角形,解题思路分析。教学过程一、给出仰角、俯角的定义在本章的开头,我们曾经用自制的测角仪测出视线(眼睛与旗杆顶端的连线)与水平线的夹角,那么把这个角称为什么角呢? 如右图,从下往上看,视线与水平线的夹角叫仰角,从上往下看,视线与水平线的夹角叫做俯角。右图中的1就是仰角, 2就是俯角。二、例题讲解 例1如图,为了测量电线杆的高度AB,在离电线杆22.7米的C处
2、,用1.20米的测角仪CD测得电线杆顶端B的仰角a22,求电线杆AB的高度。分析:因为ABAEBE,AECD1.20米,所以只要求出BE的长度,问题就得到解决,在BDE中,已知DECA22.7米,BDE22,那么用哪个三角函数可解决这个问题呢?显然正切或余切都能解决这个问题。 例2如图,A、B是两幢地平高度相等、隔岸相望的建筑物,B楼不能到达,由于建筑物密集,在A楼的周围没有开阔地带,为测量B楼的高度,只能充分利用A楼的空间,A楼的各层都可到达且能看见B楼,现仅有测量工具为皮尺和测角器(皮尺可用于测量长度,测角器可以测量仰角、俯角或两视线的夹角)。(1)你设计一个测量B楼高度的方法,要求写出测
3、量步骤和必需的测量数据 (用字母表示),并画出测量图形。(2)用你测量的数据(用字母表示)写出计算B楼高度的表达式。 分析:如右图,由于楼的各层都能到达,所以A楼的高度可以测量,我们不妨站在A楼的顶层测B楼的顶端的仰角,再测B楼的底端的俯角,这样在RtABD中就可以求出BD的长度,因为AEBD,而后RtACE中求得CE的长度,这样CD的长度就可以求出请同学们想一想,是否还能用其他的方法测量出B楼的高度。三、练习课本第22页练习的第l、2、3题。四、小结本节课我们学习了有关仰角、俯角的解直角三角形的应用题,对于这些问题,一方面要把它们转化为解直角三角形的数学问题,另一方面,针对转化而来的数学问题选用适当的数学知识加以解决。