ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:34.50KB ,
资源ID:7611248      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7611248.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(八年级数学上册 2.4有理数的加法(2课时)培优教案系列 北北师大版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

八年级数学上册 2.4有理数的加法(2课时)培优教案系列 北北师大版.doc

1、一、课题 2.4有理数的加法(1)二、教学目标1使学生掌握有理数加法法则,并能运用法则进行计算;2在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力三、教学重点和难点重点:有理数加法法则难点:异号两数相加的法则四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、师生共同研究有理数加法法则前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算这节课我们来研究两个有理数的加法两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量若我们规定赢球为“正”,输球为“负”比如,赢3球记为+3,

2、输2球记为-2学校足球队在一场比赛中的胜负可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了2球,那么全场共赢了5球也就是(+3)+(+2)=+5 (2)上半场输了2球,下半场输了1球,那么全场共输了3球也就是(-2)+(-1)=-3 现在,请同学们说出其他可能的情形答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是(+3)+(-2)=+1; 上半场输了3球,下半场赢了2球,全场输了1球,也就是(-3)+(+2)=-1; 上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3; 上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)+0=-2;上半场打平

3、,下半场也打平,全场仍是平局,也就是0+0=0 上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算?这里,先让学生思考23分钟,再由学生自己归纳出有理数加法法则:1同号两数相加,取相同的符号,并把绝对值相加;2绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3一个数同0相加,仍得这个数(二)、应用举例 变

4、式练习例1 计算下列算式的结果,并说明理由:(1)(+4)+(+7); (2)(-4)+(-7); (3)(+4)+(-7); (4)(+9)+(-4);(5)(+4)+(-4); (6)(+9)+(-2); (7)(-9)+(+2); (8)(-9)+0;(9)0+(+2); (10)0+0学生逐题口答后,教师小结:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值解:(1) (-3)+(-9) (两个加数同号,用加法法则的第2条计算)=-(3+9) (和取负号,把绝

5、对值相加)=-12下面请同学们计算下列各题:(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);全班学生书面练习,四位学生板演,教师对学生板演进行讲评(三)、小结这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则今后我们经常要用类似的思想方法研究其他问题应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事七、练习设计1计算:(1)(-10)+(+6); (2)(+12)+(-4); (3)(-5)+(-7); (4)(+6)+(+9);(5)67+(-73); (6)(-84)+(-59); (7)33+

6、48; (8)(-56)+372计算:(1)(-0.9)+(-2.7); (2)3.8+(-8.4); (3)(-0.5)+3;(4)3.29+1.78; (5)7+(-3.04); (6)(-2.9)+(-0.31);(7)(-9.18)+6.18; (8)4.23+(-6.77); (9)(-0.78)+04*用“”或“”号填空:(1)如果a0,b0,那么a+b _0;(2)如果a0,b0,那么a+b _0;(3)如果a0,b0,|a|b|,那么a+b _0;(4)如果a0,b0,|a|b|,那么a+b _05*分别根据下列条件,利用|a|与|b|表示a与b的和:(1)a0,b0; (2)

7、 a0,b0;(3)a0,b0,|a|b|; (4)a0,b0,|a|b|八、板书设计 24有理数的加法(1)(一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2(二)观察发现 (四)课堂练习 练习设计九、教学后记“有理数加法法则”的教学,可以有多种不同的设计方案大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计现在,试比较这两类教学设计的得失利弊第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,

8、这种教法近期效果较好第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会权衡利弊,我们主张采用第二种教学方一、课题 2.4有理数的加法(2) 二、教学目标1使学生掌握有理数加法的运算律,并能运用加法运算律简化运算;2培养学生观察、比较、归

9、纳及运算能力三、教学重点和难点1重点:有理数加法运算律2难点:灵活运用运算律使运算简便四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、 从学生原有认知结构提出问题1叙述有理数的加法法则2“有理数加法”与小学里学过的数的加法有什么区别和联系?答:进行有理数加法运算,先要根据具体情况正确地选用法则,确定和的符号,这与小学里学过的数的加法是不同的;而计算“和”的绝对值,用的是小学里学过的加法或减法运算3计算下列各题,并说明是根据哪一条运算法则?(1)(-9.18)+6.18; (2)6.18+(-9.18); (3)(-2.37)+(-4.63);4计算下列各题:(1)8+(-

10、5)+(-4); (2)8+(-5)+(-4); (3)(-7)+(-10)+(-11);(4)(-7)+(-10)+(-11); (5)(-22)+(-27)+(+27);(6)(-22)+(-27)+(+27)(二)、师生共同研究形成有理数运算律通过上面练习,引导学生得出:交换律两个有理数相加,交换加数的位置,和不变用代数式表示上面一段话:a+b=b+a运算律式子中的字母a,b表示任意的一个有理数,可以是正数,也可以是负数或者零在同一个式子中,同一个字母表示同一个数结合律三个数相加,先把前两个数相加,或者先把后两个数相加,和不变用代数式表示上面一段话:(a+b)+c=a+(b+c)这里a,

11、b,c表示任意三个有理数(三)、运用举例 变式练习根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加例1 计算16+(-25)+24+(-32)引导学生发现,在本例中,把正数与负数分别结合在一起再相加,计算就比较简便解:16+(-25)+24+(-32)=16+24+(-25)+(-32) (加法交换律)=16+24+(-25)+(-32) (加法结合律)=40+(-57) (同号相加法则)=-17 (异号相加法则)本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学生发现,简化加法运算一般是三种方法:首先消去互为

12、相反数的两数(其和为0),同号结合或凑整数例2、10袋小麦称重记录如图所示,以每袋90千克为准,超过的千克数记作正数,不足的千克数记作负数总计是超过多少千克或不足多少千克? 10袋小麦的总重量是多少?教师通过启发,由学生列出算式,再让学生思考,如何应用运算律,使计算简便解:7+5+(-4)+6+4+3+(-3)+(-2)+8+1=(-4)+4+5+(-3)+(-2)+(7+6+3+8+1)=0+0+25=259010+25=925答:总计是超过25千克,总重量是925千克课堂练习1计算:(要求注理由)(1)23+(-17)+6+(-22); (2)(-2)+3+1+(-3)+2+(-4);(3

13、)(-7)+(-6.5)+(-3)+6.52计算:(要求注理由)七、练习设计1计算:(要求注理由)(1)(-8)+10+2+(-1); (2)5+(-6)+3+9+(-4)+(-7);(3)(-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5;2计算(要求注理由)(1)(-17)+59+(-37); (2)(-18.65)+(-6.15)+18.15+6.15;3当a=-11,b=8,c=-14时,求下列代数式的值:(1)a+b; (2)a+c;(3)a+a+a; (4)a+b+c利用有理数的加法解下列各题(第48题):4飞机的飞行高度是1000米,上升300米,又下降500米,这

14、时飞行高度是多少?5存折中有450元,取出80元,又存入150元以后,存折中还有多少钱?6一天早晨的气温是-7,中午上升了11,半夜又下降了9,半夜的气温是多少?7小吃店一周中每天的盈亏情况如下(盈余为正):128.3元,-25.6元,-15元,27元,-7元,36.5元,98元一周总的盈亏情况如何?88筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:1.5,-3,2,-0.5,1,-2,-2,-2.58筐白菜的重量是多少?八、板书设计 24有理数的加法(2)(一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2(二)观察发现 (四)课堂练习 练习设计九、教学后记过去不少人错误地认为,推理训练是几何教学的目的,代数可以不讲理由其实,计算本身就是推理计算法则、运算性质都是进行计算的根据学生要知道每进行一步运算都要有根有据这样通过运算就能逐步培养学生的逻辑思维能力

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服