ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:340.50KB ,
资源ID:7610685      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7610685.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(九年级数学上册 24.4.2 弧长和扇形面积教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级数学上册 24.4.2 弧长和扇形面积教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc

1、24.4.2 弧长和扇形面积一、教学目标1.经历圆锥侧面积的探索过程.2.会求圆锥的侧面积和全面积,并能解决一些简单的实际问题(重点)二、课时安排1课时三、教学重点会求圆锥的侧面积和全面积,并能解决一些简单的实际问题四、教学难点经历圆锥侧面积的探索过程.五、教学过程(一)导入新课问题观察如图所示的蛋筒,它类似我们学过的什么立体图形?你还能举出其他的例子吗?(二)讲授新课探究1:圆锥及相关概念圆锥的形成 我们把连接圆锥的顶点S和底面圆上任一点的连线SA,SB 等叫做圆锥的母线圆锥有无数条母线,它们都相等 从圆锥的顶点到圆锥底面圆心之间的距离是圆锥的高 归纳:如果用r表示圆锥底面的半径, h表示圆

2、锥的高线长, l表示圆锥的母线长,那么r、h、l 之间数量关系是:r2+h2=l2填一填: 根据下列条件求值(其中r、h、l 分别是圆锥的底面半径、高线、母线长) (1)l = 2,r=1 则 h=_. (2) h =3, r=4 则 l =_. (3) l = 10, h = 8 则r=_.答案:;5;6探究2:圆锥的侧面展开图思考:圆锥的侧面展开图是什么图形?圆锥的侧面展开图是扇形问题: 1.沿着圆锥的母线,把一个圆锥的侧面展开,得到一个扇形,这个扇形的弧长与底面的周长有什么关系?2.圆锥侧面展开图是扇形,这个扇形的半径与圆锥中的哪一条线段相等?其侧面展开图扇形的半径=母线的长l,侧面展开

3、图扇形的弧长=底面周长。活动2:探究归纳1.圆锥的侧面积计算公式 ;(r表示圆锥底面的半径, l 表示圆锥的母线长 )2.圆锥的全面积计算公式 (三)重难点精讲例1 如图所示的扇形中,半径R=10,圆心角=144,用这个扇形围成一个圆锥的侧面.(1)则这个圆锥的底面半径r= (2)这个圆锥的高h= . 答案:4;例2、蒙古包可以近似地看作由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为35m2,高为3.5m,外围高为1.5m的蒙古包,至少需要多少平方米的毛毡(精确到1m2)?解:如图是一个蒙古包示意图根据题意,下部圆柱的底面积为35m2,高为1.5m;上部圆锥的高为3.51.5=2(m)圆柱的

4、底面积半径为侧面积为23.341.531.46(平方米),圆锥的母线长为侧面展开扇形的弧长为圆锥的侧面积为20(31.46+40.81)1446(平方米)(四)归纳小结1.本节课你有什么收获?(1).圆锥的侧面积计算公式 ;(r表示圆锥底面的半径, l 表示圆锥的母线长 )(2)圆锥的全面积计算公式 2.对本节课还有什么疑惑或建议?说给大家听听.教师及时查漏补缺.学生归纳、总结、体会、反思,自由发言.(五)随堂检测1 .圆锥的底面半径为3cm,母线长为6cm,则这个圆锥侧面展开图扇形的圆心角是_ 2 .一个扇形,半径为30cm,圆心角为120度,用它做成一个圆锥的侧面,那么这个圆锥的底面半径为

5、_ 3.已知圆锥的底面的半径为3cm,高为4cm,则它的侧面积是 ,全面积是 4.(1)在半径为10的圆的铁片中,要裁剪出一个直角扇形,求能裁剪出的最大的直角扇形的面积?(2)若用这个最大的直角扇形恰好围成一个圆锥,求这个圆锥的底面圆的半径?(3)能否从最大的余料中剪出一个圆做该圆锥的底面?请说明理由ABCO【答案】1. 180o2. 10cm3. 15cm2 ;24cm2 4. 解:(1)连接BC,则BC=20,BAC=90,AB=AC, AB=AC= S扇形=(2)圆锥侧面展开图的弧长为: (3)延长AO交O于点F,交扇形于点E,EF=最大半径为 不能六、板书设计24.4.2 弧长和扇形面积1.圆锥的侧面积计算公式 ;(r表示圆锥底面的半径, l 表示圆锥的母线长 )2.圆锥的全面积计算公式 例题1: 例题2: 学生板书七、作业布置课本P114练习练习册相关练习八、教学反思

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服