1、11 你能证明他们吗?(第三课时)一、教学目标:1、进一步学习证明的基本步骤和书写格式。 2、掌握证明与等边三角形、直角三角形有关的性质定理和判定定理。二、教学重点、难点:关于综合法在证明过程中的应用。三、教学过程:温故知新1、已知:ABC,ACB的平分线相交于F,过F作DEBC,交AB于D,交AC于E(1) 找出图中的等腰三角形(2) BD,CE,DE之间存在着怎样的关系?(3) 证明以上的结论。2、复习关于反证法的相关知识练习:证明:在一个三角形中,至少有一个内角小于或等于60。(笔试,进一步巩固学习证明的基本步骤和书写格式)学一学1、 探索问题:一个等腰三角形满足什么条件时便成为等边三角
2、形? 你认为有一个角等于60的等腰三角形是等边三角形吗?你能证明你的思路吗?(把你的思路与同伴进行交流。) 定理:有一个角等于60的等腰三角形是等边三角形。2、 做一做:用两个含30角的三角尺,能拼成一个怎样的三角形?能拼成一个等边三角形吗?说说你的理由。由此你能想到,在直角三角形中,30角所对的直角边与斜边有怎样的大小关系?能证明你的结论吗?(提示学生根据两个三角尺拼出的图形发现结论,并证明)证明:在ABC中,ACB=90,A=30,则B=60延长BC至D,使CD=BC,连接 ADACB=90ACD=90AC=ACABCADC(SSS)AB=AD(全等三角形的对应边相等)ABD是等边三角形
3、BC=BD=AB 得到的结论:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。 3、例题学习ADBC 等腰三角形的底角为15,腰长为2a ,求腰上的高。 已知:在ABC中,AB=AC=2a,ABC=ACB=15 度,CD是腰AB上的高 求:CD的长解:ABC=ACB=15DAC=ABC+ACB=15+15=30CD=AC=2a=a(在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半) 4、练习:课本12页 随堂练习 1四、课堂小结:通过这节课的学习你学到了什么知识?了解了什么证明方法?(学生小结:掌握证明与等边三角形、直角三角形有关的性质定理和判定定理)五、作业:1、基础作业:P13页 习题1.3 1、2、3题 2、拓展作业:目标检测3、预习作业:P15-17页 读一读 “勾股定理的证明”六、板书设计:1.1、你能证明它们吗(三)有一个角等于60的等腰三角形 在直角三角形中,如果一个锐角等于30,是等边三角形。 那么它所对的直角边等于斜边的一半。七、课后记: