ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:112.50KB ,
资源ID:7609476      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7609476.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(七年级数学下册 多边形及其内角和教学设计 北师大版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

七年级数学下册 多边形及其内角和教学设计 北师大版.doc

1、多边形及其内角和 教学设计(二)教学设计思路通过具体的图形来让学生更好的理解一些概念。对于多边形的内角和定理及其外角和定理要启发引导学生积极参与,一起分析、探究总结出所要的结论。通过例题来巩固这些知识点。教学目标知识与技能表述多边形的有关概念(内角、外角、对角线、凸多边形、凹多边形、正多边形);探索并说出多边形的内角和与外角和公式;能根据多边形内角和公式与外角和公式求多边形内角的度数和多边形的边数;进一步发展说理能力和简单的推理能力。过程与方法经历探索多边形内角和与外角和公式的过程,实际测量,推理。情感态度价值观通过探索过程进一步体会知识点之间的联系;通过本节的学习进一步体会数学与现实生活的紧

2、密联系。教学重点和难点重点是多边形的内角和定理。难点是学会善于运用三角形的有关知识来研究多边形的问题。能够灵活运用多边形内角和与外角和解决相关问题。教学方法启发引导、合作探究课时安排2课时教学媒体课件:多边形及其内角和(二)教学过程设计(一)引入你能从ppt的第2页中找出几个由一些线段围成的图形吗?(二)一些概念现在我们来学习一个概念:多边形。播放ppt第3页学习了以上概念后我们再来看ppt第2页中的图形都可以看作是几边形呢?播放ppt第4页接下来我们学习多边形的一些相关概念:内角、外角、对角线、凸多边形正多边形。结合课本上的概念播放ppt58页来一起学习这些概念。(三)练习一起学习课本86页

3、的练习(四)小结引导学生总结本节的知识点。(五)板书设计多边形及其内角和(一)一些相关概念练习第二课时(一)引入播放ppt第9页正方形、长方形的内角和都等于360,其他四边形的内角和等于多少?(二)探究播放ppt1014页(三)例题例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?解:如图7.310,四边形ABCD中,AC180。因为ABCD(42)180360,所以BD360(AC)=360180=180。这就是说,如果四边形的一组对角互补,那么另一组对角也互补。例2如图7.311,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和。六边形的外角和等于多少?分析:考

4、虑以下问题:(1)任何一个外角同与它相邻的内角有什么关系?(2)六边形的6个外角加上与它们相邻的内角,所得总和是多少?(3)上述总和与六边形的内角和、外角和有什么关系?联系这些问题,考虑外角和的求法。解:六边形的任何一个外角加上与它相邻的内角,都等于180。6个外角连同它们各自相邻的内角,共有12个角。这些角的总和等于6180。这个总和就是六边形的外角和加上内角和。所以外角和等于总和减去内角和,即外角和等于6180(62)1802180360。(四)探究如果将例2中六边形换为n边形(n的值是不小于3的任意整数),可以得到同样结果吗?播放ppt1516页由上面的探究可以得到:多边形的外角和等于360。你也可以像以下这样理解为什么多边形的外角和等于360。如图7.312,从多边形的一个顶点A出发,沿多边形的各边走过各顶点,再回到点A,然后转向出发时的方向。在行程中所转的各个角的和,就是多边形的外角和。由于走了一周,所转的各个角的和等于一个周角,所以多边形的外角和等于360。(五)练习一起学习课本89页的练习(六)小结引导学生总结本节所学的知识点(七)板书设计多边形及其内角和(二)探究多边形的内角和例题探究多边形的外角和

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服