ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:103.50KB ,
资源ID:7609122      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7609122.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(甘肃省白银市平川区第三中学九年级数学上册 1.3 线段的垂直平分线(第一课时)教案 北师大版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

甘肃省白银市平川区第三中学九年级数学上册 1.3 线段的垂直平分线(第一课时)教案 北师大版.doc

1、1.3 线段的垂直平分线 课 题 3.线段的垂直平分线(一) 课 型 新授课 教 学 目 标 1.知识目标: ①经历探索、猜测过程,能够运用公理和所学过的定理证明线段垂直平分线的性质定里和判定定理. ②能够利用尺规作已知线段的垂直平分线. 2.能力目标: ①经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力. ②体验解决问题策略的多样性,发展实践能力和创新精神. ③学会与人合作,并能与他人交流思维的过程和结果. 3.情感与价值观要求 ①能积极参与数学学习活动,对数学有好奇心和求知欲. ②在数学活动中获得成功的体验,锻炼克服困难的意志,建立

2、自信心. 教学方法 感知---体会 教具 多媒体 教学重点 写出线段垂直平分线的性质定理的逆命题 教学难点 两者的应用上的区别及各自的作用。 学 情 分 析 学生对于掌握定理以及定理的证明并不存在多大得困难,这是因为在七年级学习《生活中的轴对称》中学生已经有了一定的基础。 第一环节:创设情境,引入新课 教师用多媒体演示: 如图,A、B表示两个仓库,要在A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应建在什么位置? 其中“到两个仓库的距离相等”,要强调这几个字在题中有很重要的作用. 在七年级时研究过线段的性质,线段是一个轴对称图形,其中线段的垂

3、直平分线就是它的对称轴.我们用折纸的方法,根据折叠过程中线段重合说明了线段垂直平分线的一个性质:线段垂直平分线上的点到线段两个端点的距离相等.所以在这个问题中,要求在“A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等”利用此性质就能完成. 进一步提问:“你能用公理或学过的定理证明这一结论吗?” 教师演示线段垂直平分线的性质: 定理 线段垂直平分线上的点到线段两个端点的距离相等. 同时,教师板演本节的题目: 1.3 线段的垂直平分线(一) 第二环节:探究新知 第一环节提出问题后,有学生提出了一个问题:“要证‘线段垂直平分线上的点到线段两个端点的距离相等’,可线段垂直平分

4、线上的点有无数多个,需一个一个依次证明吗?何况不可能呢.” 教师鼓励学生思考,想办法来解决此问题。 通过讨论和思考,有学生提出:“如果一个图形上每一点都具有某种性质,那么只需在图形上任取一点作代表,就可以了.” 教师肯定该生的观点,进一步提出:“我们只需在线段垂直平分线上任取一点代表即可,因为线段垂直平分线上的点都具有相同的性质.” 已知:如图,直线MN⊥AB,垂足是C,且AC=BC,P是MN上的点. 求证:PA=PB. 分析:要想证明PA=PB,可以考虑包含这两条线段的两个三角形是否全等. 证明:∵MN⊥AB, ∴∠PCA=∠PCB=90° ∵AC=BC,PC=PC, ∴

5、△PCA≌△PCB(SAS). ; ∴PA=PB(全等三角形的对应边相等). 教师用多媒体完整演示证明过程.同时,用多媒体呈现: 第三环节:想一想 你能写出上面这个定理的逆命题吗?它是真命题吗? 这个命题不是“如果……那么……”的形式,要写出它的逆命题,需分析原命题的条件和结论,将原命题写成“如果……那么……”的形式,逆命题就容易写出.鼓励学生找出原命题的条件和结论。 原命题的条件是“有一个点是线段垂直平分线上的点”.结论是“这个点到线段两个端点的距离相等”. 此时,逆命题就很容易写出来.“如果有一个点到线段两个端点的距离相等,那么这个点到线段两个端点的距离相等.” 写出逆

6、命题后时,就想到判断它的真假.如果真,则需证明它;如果假,则需用反例说明.请同学们自行在练习册上完成. 学生给出了如下的四种证法。 证法一: 已知:线段AB,点P是平面内一点且PA=PB. 求证:P点在AB的垂直平分线上. 证明:过点P作已知线段AB的垂线PC,PA=PB,PC=PC, ∴Rt△PAC≌Rt△PBC(HL定理). ∴AC=BC, 即P点在AB的垂直平分线上. 证法二:取AB的中点C,过PC作直线. ∵AP=BP,PC=PC.AC=CB, ∴△APC≌△BPC(SSS). ∴∠PCA=∠PCB(全等三角形的对应角相等). 又∵∠PCA+∠PCB=180°

7、 ∴∠PCA=∠PCB=∠90°,即PC⊥AB ∴P点在AB的垂直平分线上. 证法三:过P点作∠APB的角平分线. ∵AP=BP,∠1=∠2,PC=PC, △APC≌△BPC(SAS). ∴AC=BC,∠PCA=∠PCB(全等三角形的对应角相等,对应边相等). 又∵∠PCA+∠PCB=180°∴∠PCA=∠PCB=90° ∴P点在线段AB的垂直平分线上. 证法四:过P作线段AB的垂直平分线PC. ∵AC=CB,∠PCA=∠PCB=90°, ∴P在AB的垂直平分线上. 四种证法由学生表述后,有学生提问:“前三个同学的证明是正确的,而第四个同学的证明我有点弄不懂.” 师

8、生共析:如图(1),PD上AB,D是垂足,但D不平分AB;如图(2),PD平分AB,但PD不垂直于AB.这说明一般情况下:过P作AB的垂直平分线“是不可能实现的,所以第四个同学的证法是错误的. 从同学们的推理证明过程可知线段垂直平分线的性质定理的逆命题是真命题, (1) (2) 我们把它称做线段垂直平分线的判定定理. 我们曾用折纸的方法折出过线段的垂直平分线.现在我们学习了线段垂直平分线的性质定理和判定定理,能否用尺规作图的方法作出已知线段的垂直平分线呢? 第四环节:做一做 活动内容:用尺规作线段的垂直平分线. 活动目的:探索尺规方法作线段垂直平分线的思路与过程以及体验其

9、中的演绎思维过程。 活动过程: 用尺规作线段的垂直平分线. 要作出线段的垂直平分线,根据垂直平分线的判定定理,到线段两个端点距离相等的点在这条线段的垂直平分线上,那么我们必须找到两个到线段两个端点距离相等的点,这样才能确定已知线段的垂直平分线. 下面我们一同来写出已知、求作、作法,体会作法中每一步的依据. [师生共析] 已知:线段AB(如图). 求作:线段AB的垂直平分线. 作法:1.分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点C和D. 2.作直线CD. 直线CD就是线段AB的垂直平分线. [师]根据上面作法中的步骤,请你说明CD为什么是AB的垂直平分线吗

10、请与同伴进行交流. [生]从作法的第一步可知 AC=BC,AD=BD. ∴C、D都在AB的垂直平分线上(线段垂直平分线的判定定理). ∴CD就是线段AB的垂直平分线(两点确定一条直线). [师]我们曾用刻度尺找线段的中点,当我们学习了线段垂直平分线的作法时.一旦垂直平分线作出,线段与线段垂直平分线的交点就是线段AB的中点,所以我们也用这种方法作线段的中点. 活动效果及注意事项:活动时可以先让学生讨论,然后点名学生板演,下面学生可以模仿着做,最后教师进行归纳和总结。 第五环节:随堂练习 课本P26 1.如图,已知AB是线段CD的垂直平分线,E是AB上的一点,如果EC=7cm

11、那么ED= cm;如果∠ECD=60°,那么∠EDC= 解:∵AB是线段CD的垂直平分线, ∴EC=ED.又∵EC=7 cm, ∴ED=7 cm. ∴∠EDC=∠ECD=60°. 2.已知直线l和l上一点P,利用尺规作l的垂线,使它经过点P. 已知:直线l和l上一点P. 求作:PC⊥l. 作法:l、以点P为圆心,以任意长为半径作弧,直线L相交于点A和B. 2.作线段AlB的垂直平分线PC. 直线PC就是所求的垂线. 第六环节:课时小结 本节课我们先推理证明了线段的垂直平分线的性质定理和判定定理,并学会用尺规作线段的垂直平分线. 集备意见 个案补充 作 业 布 置 习题l.6 第1、3题 课 后 反 思 教研(备课) 组长签字 教务处 (抽)检查

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服