ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:115.50KB ,
资源ID:7608612      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7608612.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(九年级数学上册 第二十一章 一元二次方程21.2 解一元二次方程21.2.4 一元二次方程的根与系数的关系教案(新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级数学上册 第二十一章 一元二次方程21.2 解一元二次方程21.2.4 一元二次方程的根与系数的关系教案(新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc

1、21.2.4 一元二次方程的根与系数的关系【知识与技能】1.掌握一元二次方程根与系数的关系;2.能运用根与系数的关系解决具体问题.【过程与方法】经历探索一元二次方程根与系数的关系的过程,体验观察发现猜想验证的思维转化过程,培养学生分析问题和解决问题的能力.【情感态度】通过观察、归纳获得数学猜想,体验数学活动充满着探索性和创造性,理解事物间相互联系、相互制约的辩证唯物主义观点,掌握由“特殊一般特殊”的数学思想方法,培养学生勇于探索的精神.【教学重点】一元二次方程根与系数的关系及其应用.【教学难点】探索一元二次方程根与系数的关系.一、情境导入,初步认识问题 请完成下面的表格观察表格中的结果,你有什

2、么发现?【教学说明】通过对具体问题的思考,可以找出x1+x2和x1x2与方程的系数之间的关系,引入新课.二、思考探究,获取新知通过对问题情境的讨论,可以发现方程的两根之和和两根之积与它们的系数之间存在一定的联系,请运用你发现的规律填空:(1)已知方程x2-4x-7=0的根为x1,x2,则x1+x2= , x1x2= ;(2)已知方程x2+3x-5=0的两根为x1,x2,则x1+x2= , x1x2= .答案:(1)4,-7;(2)-3,-5.思考1(1)如果方程x2+mx+n=0的两根为x1,x2,你能说说x1+x2和x1x2的值吗?(2)如果方程ax2+bx+c=0的两根为x1,x2,你知道

3、x1+x2和x1x2与方程系数之间的关系吗?说说你的理由.【教学说明】设置上述思考的两个问题,目的在于引导学生在感性认识的基础上进行理性思考,从而理解并掌握一元二次方程的根与系数的关系.教学时,应给予充足的思考交流时间,让学生自主探究结论.最后师生共同进行探究,完善认知.具体推导过程可参见教材.【归纳结论】根与系数的关系(韦达定理):若一元二次方程ax2+bx+c=0(a0)有两实数根x1,x2,则x1+x2=- ,x1x2= .这表明两根之和为一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比.思考2 在运用根与系数的关系解决具体问题时,是否需要考虑根的判别式=b2-4a

4、c0呢?为什么?【教学说明】设置思考2的目的在于让学生明白用根与系数关系解题的前提条件是0,否则方程就没有实数根,自然不存在x1,x2,防止学生片面理解而导致失误.教学时可结合具体问题引起学生注意.三、典例精析,掌握新知例1见教材16页例4.分析:对于方程(3),应化为一般形式后,再利用根与系数的关系来求解.【试一试】教材第16页练习.例2 已知方程x2-x+c=0的一根为3,求方程的另一根及c的值.分析:设方程的另一根为x1,可通过求两根之和求出x1的值;再用两根之积求c,也可将x=3代入方程求出c值.再利用根与系数关系求x1值.解:设方程另一根为x1,由x1+3=1,x1=-2.又x13=

5、-23=c,c=-6.例3已知方程x2-5x-7=0的两根分别为x1,x2,求下列式子的值:(1)x12+x22; (2) .分析:将所求代数式分别化为只含有x1+x2和x1x2的式子后,用根与系数的关系,可求其值.解:方程x2-5x-7=0的两根为x1,x2,x1+x2=5,x1x2=-7.(1)x12+x22=(x1+x2)2-2x1x2=52-2(-7)=25+14=39;(2) = 【教学说明】例1是根与系数关系的直接应用问题,学生能够自主完成,对于课本的练习老师可让学生稍作思考后解答;例2侧重于逆用根与系数关系,应注意引导学生进行正确思考;而例3侧重于利用根与系数的关系,进行代数式求

6、值,这里将代数式转化为只含有x1+x2及x1x2的式子是解决问题的关键,应引导学生关注这类变形方法.教学过程中仍应让学生先自主探究,独立完成,最后教师再予以评讲,让学生理解并掌握根与系数的关系;对于学生在探索过程中的成绩和问题也给予评析,进行反思.例4已知x1,x2是方程x2-6x+k=0的两个实数根,且x12x22-x1-x2=115,(1)求k的取值;(2)求x12+x22-8的值.分析:将x1+x2=6,x1x2=k,代入x12x22-x1-x2=115可求出k值.此时需用=b2-4ac来判断k的取值,这是本例的关键.解:(1)由题意有x1+x2=6,x1x2=k.x12x22-x1-x

7、2=(x1x2)2-(x1+x2)=k2-6=115,k=11或k=-11.又方程x2-6x+k=0有实数解,=(-6)2-4k0,k9.k=11不合题意应舍去,故k的值为-11;(2)由(1)知,x1+x2=6,x1x2=-11,x12+x22-8=(x1+x2)2-2x1x2-8=36+22-8=50.【教学说明】设置本例的目的在于引导学生正确认识根与系数的关系和根的判别式之间的不可分割的特征.教学时应予以强调.四、运用新知,深化理解1.若x1,x2是方程x2+x-1=0的两个实数根,则x1+x2= ,x1x2= ;2.已知x=1是方程x2+mx-3=0的一个根,则另一个根为,m= ;3.

8、若方程x2+ax+b=0的两根分别为2和-3,则a= ,b=; 4.已知a,b是方程x2-3x-1=0的两根,求ba+ab的值.【教学说明】设计这4个小题的目的在于让学生尽快掌握一元二次方程的根与系数的关系,前3个题,较为简单,可让学生自主完成,最后一个稍微有一点难度,只需将 + 化简即可.五、师生互动,课堂小结通过这节课的学习你有哪些收获和体会?有哪些地方需要特别注意的?谈谈你的看法.【教学说明】让学生通过回顾与反思加深对知识的领悟,畅所欲言,共同提高.1.布置作业:从教材“习题21.2”中选取.2.完成创优作业中本课时练习的“课时作业”部分.1.从熟知的解法解一元二次方程的过程中探索根与系数的关系,并发现可用系数表示的求根公式来证明这个关系,再通过问题探讨帮助学生运用这个关系解决问题,注重了知识产生、发展和出现的过程,注重了知识的应用.2.教学过程贯穿以旧引新,从具体到抽象,从特殊到一般,从简单到复杂,从猜想到论证,使学生在体验知识发生、发展和应用的过程中理解和掌握推理的数学思想与化归思想.3.教材把本节作为了解的内容,但本节知识在中考试题填空题、选择题、解答题中均有出现,为了让学生能适应平时的试题,把本节内容进行了一定的延伸,同时也可以激发同学们学习的兴趣.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服