1、第二章 有理数的乘法法则教学过程设计分析备注第二章 有理数有理数的乘法法则教学目的:1、要求学生会进行有理数的加法运算;2、使学生更多经历有关知识发生、规律发现过程。教学分析:重点:对乘法运算法则的运用,对积的确定。难点:如何在该知识中注重知识体系的延续。教学过程:一、知识导向:有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法则。二、新课拆析:1、知识基础:其一:小学所学过的乘法运算方法;其二:有关在加法运算中结果的
2、确定方法与步骤。2、知识形成:(引例)一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行。情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?列 式:即:小虫位于原来出发位置的东方6米处拓展:如果规定向东为正,向西为负情形2:小虫向西爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米? 列式: 即:小虫位于原来出发位置的西方6米处发现:当我们把“”中的一个因数“3”换成它的相反数“-3”时,所得的积是原来的积“6”的相反数“-6”; 同理,如果我们把“”中的一个因数“2”换成它的相反数“-2”时,所得的积是原来的积“6”的相反数“-6”;概括:把一个
3、因数换成它的相反数,所得的积是原来的积的相反数 3、设疑: 如果我们把“”中的一个因数“2”换成它的相反数“-2”时,所得的积又会有什么变化? 当然,当其中的一个因数为0时,所得的积还是等于0。综合:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零。例:计算:(1) (2)三、巩固训练:P52 exc1、2、3四、知识小结:本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。五、家庭作业:P57 A:exc1、2 B:exc3六、每日预题:1、小学多学过哪些乘法的运算律?2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?在复习中,应以如何得到两个数的积,以及在加法中复习到将会与乘法有类似之处的知识,特别是和的确定包括和的符号与绝对值在分析乘法的情形中,应以实例为主,在运用正负数来表示相反意义的量时,从而得到在不同情形下的积的不同符号,可以多加其他的实际模型来讲解注意到新的结论与以前结论性形成的不同之处注意积的结果的确定:首先是符号的确定(同号得正,异号得负);其次是绝对值的确定(绝对值相乘)做题中,应注意分析做题的方法与步骤在做完第3题时,应提示学生找到某种题目隐含的某种规律习题中第2题中应注意到符号和处理习题中第3题应注意到分数的乘法,