ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:214.50KB ,
资源ID:7607399      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7607399.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(八年级数学上册 7.5.2 三角形内角和定理教案 (新版)北师大版-(新版)北师大版初中八年级上册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

八年级数学上册 7.5.2 三角形内角和定理教案 (新版)北师大版-(新版)北师大版初中八年级上册数学教案.doc

1、课题:7.5.2三角形内角和定理教学目标:1理解掌握三角形的外角的概念及三角形内角和定理的推论及其应用.,体会几何中简单的不等关系的证明;2通过探索三角形内角和定理的推论的活动,培养学生的论证能力,拓宽学生的解题思路,从而使学生灵活应用所学知识解决实际问题教学重、难点:重点:三角形内角和定理的推论难点:三角形的外角、三角形内角和定理的推论的应用教学过程一、创设情景,引入课题活动内容:王师傅的“神机妙算”在一次飞机模型设计大赛上,小东与王师傅在做最后的准备工作,其中需要一个零件的形状如图所示,按规定A应等于90,B,C应分别等于32和21,小东量得BDC=148,话音刚落,王师傅就脱口而出:这零

2、件不合格你知道王师傅的判断依据是什么呢?设计意图:让学生在思想上做好准备,对所学内容产生兴趣,使学生在学习前处于对知识的“饥饿状态”,产生一个心理“缺口”,从而激发学生产生弥合心理缺口的学习动力.二、温故知新,做好铺垫1、三角形内角和为_2、如图,在ABC中,A=75,B=80,则C=_3、上图中,若将边CB延长至D,则可以得到一个新角,这个角还是三角形的内角吗?这个角叫做什么角呢?下面我们就给这种角命名,并且来研究它的性质(板书课题)概念 三角形的外角定义:三角形的一边与另一边的延长线所组成的角,叫做三角形的外角, 结合图形指明外角的特征有三:(1)顶点在三角形的一个顶点上(2)一条边是三角

3、形的一边(3)另一条边是三角形某条边的延长线处理方式:教师应在学生充分展示自己的意见之后,有意识地引导学生从三角形的外角的角度进行思考设计意图:让学生回忆三角形内角和定理,并让学生从内与外的关系联想到今天我们要学习的内容,从而引入了新课. 三、合作探究,学习新知活动内容1:三角形内角和定理的推论要求学生按照对概念的理解在图纸上画出三角形的外角,指名上台画外角并点评1、根据不同的结果,提出:一个三角形有多少个外角?每个外角又与内角有什么关系?1与ABC的三个内角有什么大小关系?2、根据学生的回答提出:能够证明你的结论吗?由学生探讨三角形外角的性质,并归纳得出:推论1: 三角形的一个外角等于和它不

4、相邻的两个内角的和推论2:三角形的一个外角大于任何一个和它不相邻的内角设计意图:通过三角形内角和定理直接推导三角形外角的两个推论,引导学生从内和外、相等和不等的不同角度对三角形作更全面的思考注意事项:新的定理的推导过程应建立在学生的充分思考和论证的基础之上,教师切勿越俎代庖活动内容2:例题讲解例1 已知:BAF,CBD,ACE是ABC的三个外角求证:BAF+CBD+ACE=360分析:把每个外角表示为与之不相邻的两个内角之和即得证证明: 1 +BAF=180, 2 +CBD=180, 3 +ACE=180,(平角的定义) 1+ 2 + 3 +BAF +CBD +ACE=180 3。(等式的性质

5、)又 1+ 2 + 3= 180,(三角形内角和定理) BAF +CBD +ACE=540 - 180= 360。(等式的性质)例2 已知:如图,D是ABC边BA延长线上一点,E是AC上一点,BE与CD相交于F,若BAC=62,ACD=35,ABE=20。求:(1)BDC度数;(2)BFD度数解:(1)在ACD中,A=62,ACD=35,BDC=A+ACD=62+35=97;(2)在BDF中,BDC+ABE+BFD=180,ABE=20,BFD=1809720=63,EFC=BFD=63(对顶角相等)设计意图:通过例题讲解让学生进一步熟悉三角形外角的两个推论并知道如何利用推论进行解题,引导学生

6、从内和外、相等和不等的不同角度对三角形作更全面的思考注意事项:新的定理的推导过程应建立在学生的充分思考和论证的基础之上,教师切勿越俎代庖四、课堂练习,加深理解活动内容:已知:如图,在三角形ABC中,AD平分外角EAC,B=CBACDE求证:ADBC.分析:要证明ADBC,只需证明“同位角相等”,即需证明DAE=B.证明:EAC=B+C(三角形的一个外角等于和它不相邻的两个内角的和)B=C(已知)B=EAC(等式的性质)AD平分EAC(已知)DAE=EAC(角平分线的定义)DAE=B(等量代换)ADBC(同位角相等,两直线平行)想一想,还有没有其他的证明方法呢?这个题还可以用“内错角相等,两直线

7、平行”来证.证明:EAC=B+C,(三角形的一个外角等于和它不相邻的两个内角的和)B=C,(已知)C=EAC.(等式的性质)AD平分EAC,(已知)DAC=EAC.(角平分线的定义)DAC=C,(等量代换)ADBC.(内错角相等,两直线平行)还可以用“同旁内角互补,两直线平行”来证.证明:EAC=B+C(三角形的一个外角等于和它不相邻的两个内角的和)B=C(已知)C=EAC(等式的性质)AD平分EAC(已知)DAC=EAC DAC=C(等量代换)B+BAC+C=180B+BAC+DAC=180 ABCDE1F2即:B+DAB=180ADBC(同旁内角互补,两直线平行)2 已知:如图,在三角形A

8、BC中,1是它的一个外角,E为边AC上一点,延长BC到D,连接DE求证:12证明:1是ABC的一个外角(已知)1ACB(三角形的一个外角大于任何一个和它不相邻的内角)ACB是CDE的一个外角(已知)ACB2(三角形的一个外角大于任何一个和它不相邻的内角)12(不等式的性质)3、释疑解惑现在,同学们再回头看一看我们开始提出的生活实例,你知道王师傅的判断依据是什么吗?其实,我们只要知道BDC和A、 B、C的关系就知道这其中的缘由了那么这四个角之间有什么关系呢?你能证你的结论吗?如图,求证:BDC=B+C+A.设计意图:通过学生的探索活动,使学生进一步了解辅助线的作法及重要性,理解掌握三角形的内角和

9、定理及推论证法一:连结AD,并延长AD,如图.则1是ABD的一个外角,2是ACD的一个外角.(外角的定义)1=3+B2=4+C(三角形的一个外角等于和它不相邻的两个内角的和)1+2=3+4+B+C(等式的性质)即:BDC=B+C+BAC证法二:延长BD交AC于E,则BDC是DCE的一个外角.BDC=C+DEC(三角形的一个外角等于和它不相邻的两个内角的和)DEC是ABE的一个外角(外角的定义)DEC=A+B(三角形的一个外角等于和它不相邻的两个内角的和)BDC=B+C+BAC(等量代换)设计意图:让学生接触各种类型的几何证明题,提高逻辑推理能力,培养学生的证明思路,同时,通过学生的探索活动,使

10、学生进一步了解辅助线的作法及重要性,理解掌握三角形的内角和定理及推论,也解决了开始提出的问题、学生的疑惑,首尾呼应,使结构完整五、归纳小结,拓展延伸:师:通过本节课的学习,你你有什么收获?与大家分享学生畅所欲言设计意图:归纳总结本节课知识点,使学生进一步明确本节课所学的知识,同时使学生对本节课的知识形成体系,便于学生理解,掌握与记忆充分发挥学生的主体作用,锻炼了学生分析、归纳、概括能力和语言表述能力六、达标检测,反馈新知基础知识1三角形的一个外角等于和它相邻的内角,则这个三角形是( )A、锐角三角形 B、钝角三角形 C、直角三角形 D、等腰直角三角形2下列命题正确的是( )A、三角形的一个外角

11、等于该三角形的两个内角的和B、三角形的一个外角大于任何一个内角C、三角形的一个外角等于和它不相邻的两个内角的和D、三角形的任何两个外角都不可能相等第5题3在ABC中,A、B的外角分别是120、150,则C=( )A、120 B、150 C、60 D、90(第4题)能力提升4如图,1=_。5如图,在ABC中,A=65,BF平分ABC, CF平分ACB,求:BFC的度数设计意图:检验学生对本节所学的理解能力和运用程度,分层设置一组课堂反馈检测题,要求学生完成必基础题后,可以有选择的去做选做题,让不同学生得到不同发展,体会到不一样的成功和收获,增强了学生学习数学的信心七、分层作业,强化目标必做题:课本 第183页 习题7.7 第1,2,3题选做题:课本 第183页 第4题设计意图:让学生巩固所学内容并进行自我检验与评价,既面向全体学生,又因材施教,照顾到学有余力的学生,体现分层教学的原则板书设计:7.5三角形内角和定理(2)外角例1例2投影区学 生 活 动 区

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服