1、二次函数利润问题专题训练(二)1、市“健益”超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克由销售经验知,每天销售量y(千克)与销售单价x(元)(x30)存在如下图所示的一次函数关系式 (1)试求出y与x的函数关系式; (2)设“健益”超市销售该绿色食品每天获得利润P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?(3)根据市场调查,该绿色食品每天可获利润不超过4480元,现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x的范围(直接写出答案) 2、 某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台
2、,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台 (1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围) (2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?3、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元)设每件商品的售价上涨x元(x为正
3、整数),每个月的销售利润为y元(1)求y与x的函数关系式并直接写出自变量的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?4、恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,
4、同时,平均每天有6千克的香菇损坏不能出售(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润销售总金额收购成本各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少5、红星食品厂独家生产具有地方特色的某种食品,产量y1(万千克)与销售价格x(元千克)(2x10)满足函数关系式y1=0.5x+11经市场调查发现:该食品市场需求量y2(万千克)与销售价格x(元千克)(2x10)的关系如图所示当产量小于或等于市场需求量时,食品将被全部售出;当产量大于市场需求
5、量时,只能售出符合市场需求量的食品,剩余食品由于保质期短将被无条件销毁 (1)求y2与x的函数关系式; (2)当销售价格为多少时,产量等于市场需求量? (3)若该食品每千克的生产成本是2元,试求厂家所得利润W(万元)与销售价格x(元千克) (2x10)之间的函数关系式6、某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满当每个房间每天的房价每增加10元时,就会有一个房间空闲宾馆需对游客居住的每个房间每天支出20元的各种费用根据规定,每个房间每天的房价不得高于340元设每个房间的房价每天增加x元(x为10的整数倍)(1)设一天订住的房间数为y,直接写出y与x的函数关系
6、式及自变量x的取值范围;(2)设宾馆一天的利润为w元,求w与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?7、凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去。(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2间包房租出,请分别写出y1、y2与x之间的函数关系式。(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写
7、出y与x之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由。8、新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次)公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,
8、曲线BC为另一抛物线的一部分,且点A,B,C的横坐标分别为4,10,12。(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式;(3)前12个月中,第几个月该公司所获得的利润最多?最多利润是多少万元?9、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。 (1)请建立销售价格y(元)与周次x之间的函数关系; (2)若该品牌童装于进货当周售完,且这种童装每件进价z
9、(元)与周次x之间的关系为, 1 x 11,且x为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少?10、我市一家电子计算器专卖店每只进价13元,售价20元,多买优惠 ;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10(2010)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元.(1).求一次至少买多少只,才能以最低价购买?(2).写出该专卖店当一次销售x只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)若店主一次卖的只数在10至5
10、0只之间,问一次卖多少只获得的利润最大?其最大利润为多少?11、为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯已知太阳能路灯售价为5000元/个,目前两个商家有此产品甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个乙店一律按原价的80销售现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1、y2与x之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?12、善于不断改
11、进学习方法的小迪发现,对解题进行回顾反思,学习效果更好某一天小迪有20分钟时间可用于学习假设小迪用于解题的时间(单位:分钟)与学习收益量的关系如图1所示,用于回顾反思的时间(单位:分钟)与学习收益的关系如图2所示(其中是抛物线的一部分,为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间(1)求小迪解题的学习收益量与用于解题的时间之间的函数关系式;(2)求小迪回顾反思的学习收益量与用于回顾反思的时间的函数关系式;(3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大?yyOx21Ox16410(图1)(图2)13、某批发市场批发甲、乙两种水果,根据以往经验和市场行情
12、,预计夏季某一段时间内,甲种水果的销售利润(万元)与进货量(吨)近似满足函数关系;乙种水果的销售利润(万元)与进货量(吨)近似满足函数关系(其中为常数),且进货量为1吨时,销售利润为1.4万元;进货量为2吨时,销售利润为2.6万元(1)求(万元)与(吨)之间的函数关系式(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为吨,请你写出这两种水果所获得的销售利润之和(万元)与(吨)之间的函数关系式并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?14、研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为(吨)时
13、,所需的全部费用(万元)与满足关系式,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,(万元)均与满足一次函数关系(注:年利润年销售额全部费用)(1)成果表明,在甲地生产并销售吨时,请你用含的代数式表示甲地当年的年销售额,并求年利润(万元)与之间的函数关系式;(2)成果表明,在乙地生产并销售吨时,(为常数),且在乙地当年的最大年利润为35万元试确定的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?15、今年我国多个省市遭受严重干旱. 受旱灾的影响,4月份,我市
14、某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:周数1234价格y(元/千克)22.22.42.6进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且与周数的变化情况满足二次函数 . 全品中考网(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x所满足的函数关系式,并求出5月份y与x所满足的二次函数关系式;(2)若4月份此种蔬菜的进价(元/千克)与周数所满足的函数关系为,5月份的进价(元/千克)与周数所满足的函数关系为试问 4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?(3)若5月的第2周共销售100吨此种蔬菜. 从5月的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的价格仅上涨. 若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出的整数值.(参考数据:,) 6 / 6
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100