ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:111.99KB ,
资源ID:7456401      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7456401.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(第10讲 信源编码的性能指标.docx)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

第10讲 信源编码的性能指标.docx

1、 第10讲 信源编码的性能指标1. 无失真信源编码的冗余度压缩原理为了压缩冗余度,必须改造信源输出符号的统计特性。一方面要尽量提高任一时刻输出符号的概率分布的均匀性,另一方面要尽量消除前后输出符号的统计相关性。因此,无失真信源编码的实质是将信源尽可能地改造为均匀分布的无记忆信源。这种信源的通信效率是最大的。改造后的新信源是由原信源和编码器共同组成的,称为编码后的信源。设f是信源S的一个编码,X是编码后的信源,则三者之间的关系表示如下信源编码f所用的码元可以与信源S的符号不同,一般是某个信道的输入符号。从数据处理这个角度来看,编码f是一个数据处理器,输入信源S的数据,输出信源X的数据。从通信的角

2、度看,编码f是一个信道,输入信源S的数据,输出信源X的数据。无失真信源编码的目的是无损压缩,即用尽可能少的数据表示数据中的所有信息,不能破坏数据原有信息。这相当于提高信息传输效率,使之接近于1。因此,度量无失真编码的压缩性能可以看编码后信息传输效率,称为编码效率。编码效率越接近于1,无损压缩性能越好。下面介绍信源编码的5个性能指标,包括平均码长、码率、编码效率、编码冗余度和压缩率。2. 平均码长平均码长是信源编码的一个关键的性能指标。在已知信源熵的前提下,根据平均码长,可以计算出无损压缩编码的码率和编码效率。定义2.1 设f是一个N-分组码,各码字的码长分别记为,对应的N长分组的概率为,则f的

3、平均码长定义为 注:在有的教材中,当平均码长的单位转化为“比特/信源”时,称为编码速率。本课程用不到这个概念。讨论:用平均码长估计编码后的数据长度设S是一个离散无记忆信源,是信源S的一个编码,其平均码长为。令是一个信源序列。假设用f对该数据进行编码,试估计编码后码元序列的长度。对于信源数据,我们令Li表示信源符号si所对应的码字f(si)的长度,则编码后的数据长度为。我们把Li视为随机变量,则对于任何i,我们有。因为S是离散无记忆的,所以Li是独立同分布随机序列。根据辛钦大数定理,我们有这表明,编码后的数据长度可以估计为,并且n越大,这个估计的越精确、可信。我们把上述结论推广如下。定理2.2

4、(无失真编码的数据长度定理)设S是具有AEP性质的信源,f是S的一个平均码长为的无失真N-分组码。假设在编码f下,某数据在编码前的长度为n信源,在编码后的长度为m码元,则 意义:信源序列长度n越大,编码后所得的码元序列的长度越有可能近似于。3. 码率和编码效率定义3.1 码率(code rate):编码后的信息传输率H(X),记为R,单位是“比特/码元”。下列定理给出了无失真编码的码率计算公式。定理3.2 设S是具有AEP性质的信源,f是信源S的无失真编码。若S的熵率为H,f的平均码长为,则f的码率为证明:记编码后的信源为X。根据定义,X的熵率为码率R。用Sk, Xk分别表示信源S和X所产生的

5、信源序列中的第k个符号。根据渐近等分性定理,由于S具有渐近等分割性,易知X也具有渐近等分割性。于是我们有其中为经编码后的码元序列,故有 .根据依概率收敛的性质,由(1)和(2)得.再由前面的编码后数据长度定理,.于是我们得,即。 证毕定义3.2 编码效率(code efficiency):对于编码f来说,编码后信源X的信息传输效率称为f的编码效率,记为。因此,码率和编码效率是信源编码的两个重要性能指标,其值越大,则编码的数据压缩能力越强。注意,对于无失真信源编码来说,提高编码效率与数据压缩是一回事。而对于限失真信源编码来说,除了通过提高编码效率来实现数据压缩之外,还通过量化方法缩小信源熵率,为

6、后面的无失真压缩提高更大的压缩空间。提问:(1)码率与编码效率的的最大值分别是多少?(2)试确定码率与编码效率的之间的数量关系。答:(1)码率最大值=码元最大熵H0(X),从而最大编码效率= H0(X) /H0(X)=1。(2)编码效率=码率/码元最大熵。定义3.3编码冗余度:度量信源编码与理想编码之间的差距,定义为 编码冗余度=最大码率码率编码相对冗余度=编码冗余度 / 最大码率=1编码效率4. 压缩率根据第8讲的渐近等分割性定理,对于足够长的的数据,我们有如下近似关系: 数据越长,该近似关系越准确和可信。根据该近似关系,读者可以看出,在信息量不变的前提下,熵率越大,数据越短。因此,提高熵率

7、所带来的结果就是数据压缩。压缩效果用压缩率来度量,定义为(1)数据压缩率:对于一个数据x,其以比特为单位的长度称为x的比特数,记为l(x)。x经过编码后的比特数记为L(x)。x的在此编码下的压缩率(也称压缩比)定义为(2)无失真信源编码压缩率:教材上都没有定义。能否给出一个合理的定义?设f是信源S的无失真编码,s是S的一个信源序列,x是在编码f下所得的码元序列。令s的长度是n,即nH0(S)比特。令x的长度是m,即mH0(X)比特。则s在f下的压缩率为根据渐近等分割性,我们有和由于编码是无失真的,故I(s)=I(x)。因此,即其中是信源S的信息传输效率, 是编码后信源X的信息传输效率,即编码效

8、率。这个收敛关系表明,当信源序列足够长时,其数据压缩率很有可能近似于信源效率比上编码效率。因此,这个常数可以度量编码f的压缩效果。因此,我们定义无失真信源编码的压缩效率如下:无失真信源的压缩效率=信源效率/编码效率因此,编码效率越大,则压缩能力越强。(3)信源的极限压缩率:数据是不可能被无限压缩下去的,总存在各自的极限。我们讨论信源数据的压缩极限。假设信源S的熵率H在某编码下被提高到了最大值H0,则该编码的压缩性能达到理论允许的极限。此时压缩率为 因此,信源的相通信效率是信源数据的压缩率期望的极限。我们把这个极限称为信源极限压缩率。r-元编码器f信源序列s码元序列x信息量: I(s)数据长度:

9、n信源信息速率:I(x)m码元无失真信源编码关系图5. 信源的最优无失真编码根据上面的计算公式,编码效率与平均码长是反比例关系。这表明,缩短平均码长与提高编码效率是同一回事。因此,对于无失真编码来说,数据压缩与提高编码效率是同一回事。编码效率越接近于1,编码的压缩能力越强。因此,在某信源的所有无失真编码中,我们把其中编码效率达到1的编码称为该信源的最优无失真编码。这为无失真编码的设计工作指明了努力的目标。一般来说,由于编码的离散性,这个目标是永远达不到的,但是可以无限地接近。因此,一般来说,信源编码没有最好,但有更好。(当编码效率=1时,编码后的信源是均匀分布的无记忆信源。要做到这一点,信源编

10、码必须消除原信源的记忆性,即前后输出符号之间的统计相关性,并且要让编码后的信源在任何时刻输出符号的概率分布是均匀的。对于一般的信源来说,其任何编码都不可能完全做到这一点,绝对最优的信源编码是不存在的。)如果把上述最优编码称为绝对最优编码的话,还有一种相对最优编码,其定义如下。定义5.1在信源S的所有r-元N-分组无失真编码中,平均码长最小的称为S的最优r-元N-分组无失真编码。注:(1)一个信源的r-元N-分组码是有限多的,所以其中一定存在最优码。(2)比较两个不同元数的编码的平均码长时,其单位要化为相同的单位后才可以比较。无失真信源编码理论的核心问题就是寻找最优无失真编码。 根据编码效率与平

11、均码长的反比关系,要提高编码效率只需缩短平均码长即可,这是实现无失真编码的数据压缩功能的唯一途径。下一讲我们将重点讨论这个问题。这里我们先了解最优编码的两个简单性质。命题5.2 最优编码是概率匹配编码,即信源符号的概率越小,对应的码字长越大。证明 设f是信源U的最优的1-分组编码。令U的n个符号的分别为ai,对应的概率为pi,在某编码下,对应码字长为li。假设存在两个符号ai,aj,有pi pj且li lj, 则pi li + pj lj pi lj+ pj li 。因此,对调ai与aj的码字后,可以得到平均码长更小的编码。这与f的最优性矛盾。 证毕命题5.3最优编码充分用短字符串作为码字。设

12、f是某信源的最优编码,最大码字长为L,则任何长度小于L的串一定是f的某个码字的前缀。证明 留给读者。 证毕6. 本讲要点小结1) 平均码长的定义和物理意义。2) 平均码长的应用:(1) 估计无失真编码的码元序列长度信源序列长度平均码长这表明,无失真编码的平均码长越小,压缩能力越强。(2) 计算无失真编码的码率=信源熵/平均码长(3) 计算无失真编码的效率=码率/码元最大熵=信源熵/(平均码长码元最大熵)这表明,编码效率与平均码长是反比关系,从而无失真编码的数据压缩功能与提高信息传输率的功能是一致的。3) 无失真编码的绝对最优性和相对最优性:(1) 绝对最优性:编码效率=1的无失真编码是该信源的绝对最优无失真编码。一般不存在,是可以逼近的理想目标。(2) 相对最优性:在所有元数固定且分组长度也固定的无失真编码中,编码效率最大或者平均码长最小的码是相对最优无失真编码。一定存在,是可以实现的目标。4) 实现无失真信源编码的数据压缩功能的唯一途径是,尽可能地缩小平均码长。 6 / 6

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服