ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:47KB ,
资源ID:7453179      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7453179.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(九年级数学上册 弧长和扇形面积教学设计 冀教版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级数学上册 弧长和扇形面积教学设计 冀教版.doc

1、弧长和扇形面积 教学设计教学设计思想本节需要两个课时,第一课时学习弧长和扇形面积,第二课时认识圆锥的侧面展开图。提高学生解决问题的能力,特别是用用数学解决问题的能力是数学教学的重要目标,因此本节内容重在方法的掌握,不要求学生死记公式。其中例题的学习主要通过学生的活动来完成,让学生学会分析面对的问题,遇到障碍时不至于束手无策。教学目标知识与技能:1会计算弧长及扇形的面积。2会计算圆锥的侧面积和全面积,并能用这些知识解决相关问题。3知道圆锥的侧面积和扇形面积之间的关系。过程与方法:1通过作图、识图、阅读图形探索弧长、扇形及其组合图形面积的计算方法和解题规律。2在探究弧长公式和扇形面积公式的过程中,

2、体会“从特殊到一般”的数学思想方法。情感态度价值观:在合作交流中体验成功的快乐。教学重难点重点:1计算弧长和扇形面积;2利用弧长和扇形面积公式计算圆锥的侧面积和全面积。难点:理解公式的推导过程教学媒体多媒体课时安排2课时教学过程设计一、复习引入已知O半径为R,O的面积S是多少?S=R2我们在求面积时往往只需要求出圆的一部分面积,如图中阴影图形的面积为了更好研究这样的图形引出一个概念扇形:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。你能举例说出生活中的扇形吗?(比如扇子。)问题1:请同学们观察下图,指出哪部分是扇形,并说出它是由哪条弧和哪两条半径构成?问题2:请同学们判断,在同圆或等

3、圆中,是否具有相同圆心角的扇形面积也相等呢?学生同桌讨论,做出正确判断,老师予以补充说明。结论:在同圆或等圆中,由于相等的圆心角所对的弧相等,所以具有相等圆心角的扇形,其面积也相等。二、做一做认识了扇形,我们下面就来一起探究一下已知O半径为R,如何求圆心角n的扇形的面积1教师引导学生迁移推导弧长公式的方法步骤:设置问题:圆的周长是多少?1圆心角所对弧的长是多少?90圆心角所对弧的长是多少?n圆心角所对弧的长是多少?学生独立思考,给出答案。(1)圆周长C=2R;(2)1圆心角所对弧长=;(3)90圆心角所对弧长=;(4)n圆心角所对的弧长是1圆心角所对的弧长的n倍;n圆心角所对弧长=归纳结论:若

4、设O半径为R, n圆心角所对弧长l,则 (弧长公式)2一起探究扇形面积教师组织学生对比研究:(1)圆面积S=R2;(2)圆心角为1的扇形的面积=;(3)圆心角为1的扇形的面积=(4)圆心角为n的扇形的面积是圆心角为1的扇形的面积n倍;(5)圆心角为n的扇形的面积=归纳结论:若设O半径为R,圆心角为n的扇形的面积S扇形,则S扇形=(扇形面积公式)3理解公式教师引导学生理解:(1)在应用扇形的面积公式S扇形=进行计算时,要注意公式中n的意义n表示1圆心角的倍数,它是不带单位的;(2)公式可以理解记忆(即按照上面推导过程记忆);提出问题:扇形的面积公式与弧长公式有联系吗?(教师组织学生探讨)S扇形=

5、 lR想一想:这个公式与什么公式类似?(教师引导学生进行,或小组协作研究)与三角形的面积公式类似,只要把扇形看成一个曲边三角形,把弧长l看作底,R看作高就行了这样对比,帮助学生记忆公式实际上,把扇形的弧分得越来越小,作经过各分点的半径,并顺次连结各分点,得到越来越多的小三角形,那么扇形的面积就是这些小三角形面积和的极限要让学生在理解的基础上记住公式三、灵活应用例 如图,O的半径为10cm。(1)如果AOB=100,求的长(精确到0.1cm)及扇形AOB的面积(精确到0.1cm2);(2)已知=25cm,求COB的度数。学生:利用所学弧长及扇形面积的共式,充分探究,最后教师归纳总结。解:略,见课

6、本P17。四、巩固练习教材P17 练习五、总结知识:弧长及扇形面积公式 S扇形=,S扇形=lR方法能力:迁移能力,对比方法六、作业 教材P18习题1、2、3七、板书设计弧长和扇形面积一、 定义 二、弧长公式 三、扇形面积公式 四、例题 五、练习第二课时一、引入生活中,我们会遇到许多圆锥形的物体,如图中的铅锤、粮堆、烟囱帽、漏斗等今天我就来研究它的一些特性。二、做一做在小学我们已知道,圆锥是由一个底面和一个侧面围成的,如下图。我们把圆锥的顶点与地面圆周上任一点的连线叫做圆锥的母线。从圆锥的顶点与底面圆心之间的线段叫做圆锥的高h问:初一时我们学习几何体的展开图,请回忆一下,圆锥侧面展开图是什么形状

7、?答:扇形。好,那请同学们把手中的圆锥沿侧面展开。学生以小组为单位,动手活动问:请同学们观察手中的图形,思考这个扇形所在圆的半径长什么?学生独自思考,并回答。侧面展开图(扇形)的半径长等于圆锥的一条母线长。三、一起探究请同学们结合手中的圆锥展开图,思考已知圆椎的底面半径为r,母线为a。(1)如何用r和a表示扇形的弧长及扇形的面积?(2)如何用r和a表示圆锥的侧面积以及圆椎的表面积?学生以小组为单位讨论探究,老师巡视指导然后选几个小组的代表回答探究结果,其他学生补充说明。师生一起总结出如下公式:底面的周长:2r;底面的面积:r2;扇形的弧长:2r;圆椎的表面积:ra+r2四、应用例2 略。见课本P18例3 略。见课本P19这两道例题由学生独立完成五、练习课本P20 练习1、2六、小结圆锥是由一个圆和一个曲线围成的,这个曲线的展开图是一个扇形,我们可以利用扇形的面积公式来求圆锥的侧面积,从而进一步求出圆锥的表面积。圆锥侧面展开图(扇形)中的各元素与圆锥的各元素之间的关系极为密切,即扇形的半径是圆锥的母线,扇形的弧长是圆锥底面圆的周长。因此我们要重视空间图形与平面图形的互相转化。七、板书圆锥的侧面积一、母线和高 二、圆锥侧面积与表面积 三、例题

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服