ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:138KB ,
资源ID:7452962      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7452962.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(陕西省靖边四中九年级数学上册 23.2.3 一元二次方程的解法教案 华东师大版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

陕西省靖边四中九年级数学上册 23.2.3 一元二次方程的解法教案 华东师大版.doc

1、23.2.3一元二次方程的解法教学目标:1、掌握用配方法解数字系数的一元二次方程2、使学生掌握配方法的推导过程,熟练地用配方法解一元二次方程。3在配方法的应用过程中体会 “转化”的思想,掌握一些转化的技能。重点难点: 使学生掌握配方法,解一元二次方程。把一元二次方程转化为教学过程:一、复习提问解下列方程,并说明解法的依据: (1) (2) (3) 通过复习提问,指出这三个方程都可以转化为以下两个类型:根据平方根的意义,均可用“直接开平方法”来解,如果b 0,方程就没有实数解。如请说出完全平方公式。 。二、引入新课我们知道,形如的方程,可变形为,再根据平方根的意义,用直接开平方法求解那么,我们能

2、否将形如的一类方程,化为上述形式求解呢?这正是我们这节课要解决的问题三、探索:1、例1、解下列方程:2x5; (2)4x30.思考能否经过适当变形,将它们转化为 = a 的形式,应用直接开方法求解?解(1)原方程化为2x16, (方程两边同时加上1)_,_,_.(2)原方程化为4x434 (方程两边同时加上4)_,_,_.三、归纳上面,我们把方程4x30变形为1,它的左边是一个含有未知数的完全平方式,右边是一个非负常数.这样,就能应用直接开平方的方法求解.这种解一元二次方程的方法叫做配方法.注意到第一步在方程两边同时加上了一个数后,左边可以用完全平方公式从而转化为用直接开平方法求解。那么,在方

3、程两边同时加上的这个数有什么规律呢?四、试一试:对下列各式进行配方:; ; ;通过练习,使学生认识到;配方的关键是在方程两边同时添加的常数项等于一次项系数一半的平方。五、例题讲解与练习巩固1、例2、 用配方法解下列方程:(1)6x70; (2)3x10.2、练习:.填空:(1) (2)8x( )(x- )2(3)x( )(x )2; (4)46x( )4(x )2 用配方法解方程:(1)8x20 (2)5 x60. (3) 六、试一试用配方法解方程x2pxq0(p24q0).先由学生讨论探索,教师再板书讲解。解:移项,得 x2pxq,配方,得 x22x()2()2q,即 (x) 2.因为 p2

4、4q0时,直接开平方,得 x.所以 x-,即 x.思 考:这里为什么要规定p24q0?七、讨 论1、如何用配方法解下列方程?4x212x10; 请你和同学讨论一下:当二次项系数不为1时,如何应用配方法?2、关键是把当二次项系数不为1的一元二次方程转化为二次项系数为1的一元二次方程。先由学生讨论探索,再教师板书讲解。解:(1)将方程两边同时除以4,得 x23x0移项,得 x23x配方,得 x23x+()2+()2即 (x) 2直接开平方,得 x所以 x所以x1,x2=3,练习:用配方法解方程: (1) (2)3x22x30. (3) (原方程无实数解)本课小结:让学生反思本节课的解题过程,归纳小结出配方法解一元二次方程的步骤:1、把常数项移到方程右边,用二次项系数除方程的两边使新方程的二次项系数为1;2、在方程的两边各加上一次项系数的一半的平方,使左边成为完全平方;如果方程的右边整理后是非负数,用直接开平方法解之,如果右边是个负数,则指出原方程无实根。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服