1、2.6 近似数与有效数字教学设计教学设计: 一 学习目标:1了解近似数与有效数字的概念,体会近似数的意义及在生活中的作用 2能说出一个近似数的精确度或有几个有效数字,能按照要求用四舍五入的方法取一个数的近似数二 重点与难点:按要求用四舍五入法取一个数的近似数三 设计思路:本节课通过生活情境让学生搜集生活中的数据,感受数的意义,使得学生进一步认识了近似数,学会了如何去取一个数的近似值,以及指出一个近似数的有效数字,通过讨论交流使学生理解用科学记数法记数,不仅便于记一些较大(小)的数,而且易于表示近似数的有效数字.四 教学过程(一)情境创设(1) 从早晨起床到上学,你从你的生活环境中获得哪些数的信
2、息?(2) 生活中,有些数据是准确的,有些是近似的,你能举例说明吗?(设计说明:让学生自己搜集生活中与数有关的信息,从中进一步感受数的意义)(二) 近似数实际生产生活中的许多数据都是近似数,例如测量长度,时间,速度所得的结果都是近似数,且由于测量工具不同,其测量的精确程度也不同。在实际计算中对于像这样的数,也常常需取它们的近似值.请说说生活中应用近似数的例子。(设计说明:通过交流生活中近似数的例子,使学生认识到生活中存在近似数,感受近似数在生活中的作用,体会数学与生活的关系)取一个数的近似值有多种方法,四舍五入是最常用的一种方法。用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数
3、精确到哪一位.例如,圆周率=3.1415926取3,就是精确到个位(或精确到1)取3.1,就是精确到十分位(或精确到0.1)取3.14,就是精确到百分位位(或精确到0.01)取3.142,就是精确到千分位位(或精确到0.001)(三) 有效数字对一个近似数,从左面第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。 例如:上面圆周率的近似值中,3.14有3个有效数字3,1,4;3.142有4个有效数字3,1,4,2.(四) 例题教学例1 小亮用天平称得罐头的质量为2.026kg,按下列要求取近似数,并指出每个近似数的有效数字:(1) 精确到0.01kg;(2) 精确到0.
4、1kg;(3) 精确到1kg.(设计说明:简单应用上面所学知识,先四舍五入取近似值,再确定近似数的有效数字,应注意提醒学生不能随便将小数点后的0去掉.)例2 用四舍五入法,按要求对下列各数取近似值,并用科学记数法表示.(1) 地球上七大洲的面积约为149480000(保留2个有效数字)(2) 某人一天饮水1890ml(精确到1000ml)(3) 小明身高1.595m(保留3个有效数字)(4) 人的眼睛可以看见的红光的波长为0.000077cm(精确到0.00001)请与同学交流讨论.(设计说明:通过讨论使学生理解用科学记数法记数,不仅便于记一些较大(小)的数,而且易于表示近似数的有效数字)(五
5、) 课堂练习1 基础训练书p78 1,22 创新探究( 1) 胜利农场养鸡35467只,一个个体户养鸡13530只(四舍五入到十位),光明农场养鸡64800只(四舍五入到百位),要比较他们养鸡的多少,胜利农场养鸡数应四舍五入到哪一位数时,误差会少些。(2)张娟和李敏在讨论问题。张娟:如果你把7498近似到千位数,你就会得到7000.李敏:不,我有另外一种解答方法,可以得到不同的答案。首先将7498近似到百位得7500,接着把7500近似到千位,就得到8000。张娟:你怎样评价张娟和李敏的说法呢?3 研究性学习练习(1) 有一个四位数x,先将它四舍五入到十位,得到近似数m,再把四位数m四舍五入到百位,得到近似数n,再把四位数n四舍五入到千位,恰好是2000,你能求出四位数x的最大值与最小值吗?(设计说明:通过练习,进一步巩固所学知识,发展能力)(六) 课堂小结举出生活中的近似数,指出它们精确到哪一位?各有几个有效数字?五 教后反思: