ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:886.50KB ,
资源ID:7451200      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7451200.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(八年级数学下册 第一章 三角形的证明 1.2 直角三角形(第1课时)教案 (新版)北师大版-(新版)北师大版初中八年级下册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

八年级数学下册 第一章 三角形的证明 1.2 直角三角形(第1课时)教案 (新版)北师大版-(新版)北师大版初中八年级下册数学教案.doc

1、2直角三角形第1课时【教学目标】知识技能目标1.掌握直角三角形的性质定理及判定定理的证明方法,并能应用定理解决与直角三角形有关的问题.2.结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立,其逆命题不一定成立.过程性目标进一步经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.情感态度目标鼓励学生积极参与数学活动,激发学生的好奇心和求知欲.【重点难点】重点:1.了解勾股定理及其逆定理的证明方法.2.结合具体例子了解逆命题的概念,识别两个互逆命题,知道原命题成立,其逆命题不一定成立.难点:勾股定理逆定理的证明方法.【教学过程】一、创设情境通过问题1,让学

2、生在解决问题的同时,回顾直角三角形的一般性质.问题1一个直角三角形房梁如图所示,其中BCAC, BAC=30,AB=10 cm,CB1AB,B1C1AC1,垂足分别是B1,C1,那么BC的长是多少? B1C1呢?解:在RtABC中,CAB=30,AB=10 cm,BC=AB=10=5(cm).CB1AB,B+BCB1=90.又A+B=90,BCB1 =A=30.在RtBCB1中,BB1=BC=5=(cm)=2.5(cm).AB1=AB-BB1=102.5=7.5(cm).在RtC1AB1中,A=30,B1C1 =AB1= 7.5=3.75(cm).解决这个问题,主要利用了上节课已经证明的“含3

3、0角的直角三角形的性质”.由此提问:“一般的直角三角形具有什么样的性质呢?”从而引入勾股定理及其证明.教材中曾利用数方格和割补图形的方法得到了勾股定理.如果利用公理及由其推导出的定理,能够证明勾股定理吗?请同学们打开课本P16,阅读“读一读”,了解一下利用教科书给出的公理和推导出的定理,证明勾股定理的方法.二、探究归纳探索一:已知:如图,在ABC中,C=90,BC=a,AC=b,AB=c.求证:a2+b2=c2.证明:延长CB至D,使BD=b,作EBD=A,并取BE=c,连接ED,AE(如图),则ABCBED.BDE=90,ED=a(全等三角形的对应角相等,对应边相等).四边形ACDE是直角梯

4、形.S梯形ACDE=(a+b)(a+b) =(a+b)2.ABE=180-(ABC+EBD)=180-90=90,AB=BE.SABE=c2.S梯形ACDE=SABE+SABC+SBED,(a+b) 2= c2 + ab + ab, 即a2 + ab + b2=c2 + ab,a2+b2=c2探索二:如果在一个三角形中,当两边的平方和等于第三边的平方时,我们能得出“这个三角形是直角三角形”的结论吗?已知:如图:在ABC中,AB2+AC2=BC2求证:ABC是直角三角形.分析:要从边的关系,推出A=90是不容易的,如果能借助于ABC与一个直角三角形全等,而得到A与对应角(构造的三角形的直角)相等

5、,即可得证.证明:作RtABC,使A=90,AB=AB,AC=AC(如图),则AB2+AC2=BC2(勾股定理).AB2+AC2=BC2,AB=AB,AC=AC,BC2=BC2,BC=BC,ABCABC(SSS).A=A=90(全等三角形的对应角相等).因此,ABC是直角三角形.总结得勾股定理的逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.探索三:观察上面两个命题,它们的条件和结论之间有怎样的关系?在前面的学习中还有类似的命题吗?上面两个定理的条件和结论互换了位置,即勾股定理的条件是第二个定理的结论,结论是第二个定理的条件.这样的两个定理我们称之为互逆定理.是不是

6、所有的定理都有互逆定理呢?请举例.如果两个角是对顶角,那么它们相等.如果两个角相等,那么它们是对顶角.它们就称为互逆命题,如果称每组的第一个命题为原命题,另一个则为逆命题. 三、交流反思这节课我们了解了勾股定理及其逆定理的证明方法,并结合数学和生活中的例子了解逆命题的概念,会识别两个互逆命题,知道,原命题成立,其逆命题不一定成立,掌握了证明方法,进一步发展了演绎推理能力.四、检测反馈说出下列命题的逆命题,并判断每对命题的真假:(1)四边形是多边形.(2)两直线平行,同旁内角互补.(3)如果ab=0,那么a=0, b=0五、布置作业P17习题1.5 第1题六、板书设计勾股定理勾股定理的逆定理互逆命题互逆定理七、教学反思学生对于命题和逆命题中题设和结论的分析和把握不是太准,部分学生尤其是在语言表述方面仍然有些欠缺,作为教师要关注到学生的个体差异,对于学习本节知识有困难的学生要给予及时的帮助和指导.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服