ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:150.50KB ,
资源ID:7451055      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7451055.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(七年级数学下册 9.6《探索多边形的内角和与外角和》教案 鲁教版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

七年级数学下册 9.6《探索多边形的内角和与外角和》教案 鲁教版.doc

1、9.6 探索多边形的内角和与外角和教学目标(一)知识目标多边形的定义及内角和公式的推导.(二)能力训练目标1.经历探索多边形内角和公式的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系.2.探索并了解多边形的内角和公式,进一步发展学生的说理和简单推理的意识及能力.(三)情感与价值观目标1.通过师生共同活动,训练学生的发散性思维,培养学生的创新精神.2.使学生懂得数学内容普遍存在相互联系,相互转化的特点.教学重点多边形的内角和.教学难点多边形的内角和的公式推导.教学方法启发、讨论式.教学过程一、巧设情景问题,引入课题师前面我们学习了三角形、平行四边形,今天我

2、们要学习什么内容呢?请看大屏幕(出示投影片:石英钟、六角螺母、五角星、地板砖等)师刚才大家看到许多实物图片,你知道它们各是什么图形?生四边形、五边形、六边形、八边形.师对,这些在日常生活中经常看到的图形,就是我们这节课要研究的内容多边形(polygon)二、讲授新课师什么叫多边形呢?在七年级上册的第一章中曾有这样的定义:多边形是由一些不在同一直线上的线段依次首尾相连组成的封闭图形.我们在初中阶段主要探讨的平面几何.所以现在定义的多边形应在同一平面内,即:在平面内,由若干条不在同一直线上的线段首尾顺次相连组成的封闭图形叫做多边形.在定义中应注意:若干条;首尾顺次相连,二者缺一不可.多边形有凸多边

3、形和凹多边形之分,如图.把多边形的任何一边向两方延长,如果其他各边都在延长所得直线的同一旁,这样的多边形叫做凸多边形(如图(2)图(1)的多边形是凹多边形我们探讨的一般都是凸多边形.多边形的边、内角、顶点、对角线、内角和的含义与三角形相同,即:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.对角线:在多边形中,连结不相邻两个顶点的线段叫做多边形的对角线.内角:多边形相邻两边组成的角叫多边形的内角.如图多边形通常以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.多边形的表示方法与三角形、四边形类似.可以用表示它

4、的顶点的字母来表示,如可顺时针方向表示,也可逆时针方向表示,如图(3),可表示为五边形ABCDE,也可表示为五边形EDCBA,还可以用下标表示为五边形A1A2A3A4A5,n边形可表示为n边形A1A2A3An(n3的自然数)三角形可用三条边来表示,四边形可用四条边来表示.n边形呢?要画多少条边来表示呢?我们可用虚线表示省略的边,其余的边用实线表示.如上图,就是n边形A1A2A3An.n边形有n条边,n个顶点,n个内角.好,我们了解了多边形的有关概念后,看一幅图及问题 (课本P108的图)(1)上图中广场中心的边缘是一个五边形,你能设法求出它的五个内角的和吗?与同伴交流.(2)小明、小亮分别利用

5、下面的图形求出了该五边形的五个内角的和.你知道他们是怎么做的吗?(3)还有其他的方法吗?(学生讨论、画图、归纳)生甲(1)求五边形的内角和可以利用量角器测每个内角的度数,然后求出这五个内角的和,即是五边形的内角和为540.也可以把五边形分割成三角形,因为三角形的内角和是180.生乙小明是直接把五边形的五个内角分割在3个三角形中(如图(1),每个三角形的内角和是180,所以五边形的内角和为3180=540.小亮是在五边形内任意取一个点,然后把五边形分割成五个三角形(如图(2),但从图中可以知道,这时多了一个周角,即360.因此,五边形的内角和为:1805360= 540.生丙也可以在五边形的任一

6、条边上取一个点,然后这个点与各顶点连结,这时五边形被分割成四个三角形(如图(3),但多了一个平角,即180,因此,五边形的内角和为:1804180=540.生丁在五边形外任取一点,将这点与五边形的各顶点连结起来,这时五边形被分割成四个三角形,此时,从图中可以看出多出一个三角形.因此五边形的内角和为1804180=540.师很不错,同学们回答得很好,在求五边形的内角和时,先把五边形转化成三角形.进而求出内角和,这种由未知转化为已知的方法是我们数学中一种非常重要的方法.下面大家来“想一想”(出示投影片9.6B) 1.按如下图(5)所示的方法,六边形能分成多少个三角形?n边形(n是大于或等于3的自然

7、数)呢? 2.你能确定n边形的内角和吗?师同学们可以多画几个边数不一样的多边形,来总结归纳分割多边形的方法.生甲如图(5),从五边形的一个顶点向和它不相邻的顶点引了两条对角线,这时五边形分成三个三角形;从六边形的一个顶点向和它不相邻的顶点引了三条对角线,这时六边形分成了四个三角形;从七边形的一个顶点向和它不相邻的顶点引四条对角线,这时七边形分成了五个三角形.从n边形的一个顶点向和它不相邻的顶点引(n3)条对角线,把n边形分成了(n2)个三角形.生乙从n边形的一个顶点出发,向自身和相邻的两个顶点无法引对角线,向其他顶点共引(n3)条对角线,这时n边形被分割成(n2)个三角形,因为每个三角形的内角

8、和是180,所以n边形的内角和为(n2)180.师要求n边形的内角和,关键是将n边形分割转化为有公共顶点的三角形;由三角形的内角和得到n边形的内角和.即:n边形的内角和为(n2)180.大家想一想,n边形的内角和公式中,字母n取值有没有范围?生有,必须是大于3的自然数.师对,同学们口答一下:12边形的内角和是多少呢?生齐声1800师很好,要求n边形的内角和,只需把n代入内角和公式:(n2)180,即可算出.下面大家看大屏幕“想一想”(出示投影片如下)观察下图中的多边形,它们的边、角有什么特点?生这五个多边形,每个多边形的边都相等,内角也都相等.师很好,在平面内,内角都相等,边也都相等的多边形叫

9、做正多边形,如上图中的多边形分别为:正三角形、正四边形即正方形、正五边形、正六边形、正八边形.正多边形都是轴对称图形,边数为偶数的正多边形是中心对称图形.下面大家想一想,议一议1.一个多边形的边都相等,它的内角一定都相等吗?2.一个多边形的内角都相等,它的边一定都相等吗?3.正三角形、正四边形(正方形)、正五边形、正六边形、正八边形的内角分别是多少度?生甲一个多边形的边都相等,它的内角也一定都相等,如正三角形、正方形.生乙错的.如菱形的四条边相等,但它的内角不一定都相等,所以应该说:一个多边形的边都相等,它的内角不一定都相等.生丙一个多边形的内角都相等,它的边不一定都相等,如:矩形的内角都是直

10、角,但它的边未必都相等.师同学们从不同角度进行分析,得到了准确的答案,非常好,接下来看第(3)小题.生丁因为正多边形的每个内角都相等,且它的内角和为(n2)180,所以,正n边形的每个内角为:180.因此,正三角形的内角是:正方形的内角是:180=90正五边形的内角是:180=108正六边形的内角是:180=120正八边形的内角是:180=135.师很好,接下来我们做练习来巩固多边形的内角和公式.三、课堂练习(一)课本P110随堂练习1.如下图. (1)作多边形所有过顶点A的对角线,并分别用字母表示出来.(2)求这个多边形的内角和.解:(1)如下图:过顶点A的对角线是AC、AD、AE.(2)从(1)图中可知:这个六边形被过顶点A的对角线分割成四个三角形,所以,这个多边形的内角和为1804=720.也可以利用多边形的内角和公式进行计算即:(62)180=720四、课时小结本节课我们研究了多边形的定义及其内角和公式,重点探讨了多边形的内角和公式.即:n边形的内角和等于(n2)180,它揭示了多边形内角和与边数之间的关系.五、课后作业(一)课本习题9.6 1、2、3

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服