1、2.2.2 平方根(二)教学设计教学任务分析 平方根是义务教育课程标准北师大版实验教科书八年级(上)第二章实数的第二节.本节安排了两个课时完成.第一课时是了解数的算术平方根的概念,会用根号表示一个数的算术平方根.在具体的例子中抽象出概念,发展学生的抽象概括能力.本节课是第二课时,继续学习平方根的概念及其运用.并对“平方根”和“算术平方根”,“平方”和“开平方”的概念做辨析,使学生在“引导-探索-类比-发现”中发展学习数学的能力. 学习目标知识目标1.了解平方根、 开平方的概念.2.明确算术平方根与平方根的区别和联系.3.进一步明确平方与开平方是互逆的运算关系.能力目标1.经历平方根概念的形成过
2、程,让学生不仅掌握概念,而且提高和巩固所学知识的应用能力.2.培养学生求同与求异的思维,通过比较提高思考问题、辨析问题的能力.情感目标1.在学习中互相帮助、交流、合作、培养团队的精神.2.在学习的过程中,培养学生严谨的科学态度.教学重点:1.了解平方根开、平方根的概念. 2.了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.3.了解平方根与算术平方根的区别与联系.教学难点:1. 平方根与算术平方根的区别和联系.2. 负数没有平方根,即负数不能进行平方根的运算.3.教学方法引导、探究、类比相结合课前准备 ppt和flash教学过程设计本节课设计了六个教学环节:第
3、一环节:复习旧知 引入新知;第二环节:形成概念,辨析概念;第三环节:例题和巩固练习;第四环节:课堂小结;第五环节:思维拓展;第六环节:布置作业.第一环节:复习旧知 引入新知(一)复习1什么叫算术平方根? 3的平方等于9,那么9的算术平方根就是_3_.的平方等于 ,那么 的算术平方根就是_.展厅的地面为正方形,其面积49平方米,则边长_7_米.2.到目前为止,我们已学过哪些运算?这些运算之间的关系如何?乘方有没有逆运算? 平方与算术平方根之间的关系?已知折叠着的正方形ABCD面积为1,则边长为_1_.将它扩展,面积变为原来的2倍,那么它的边长为_;若面积变为原来的3倍,则边长为_;若面积变为原来
4、的n倍,则边长为_.(二)复习引入问题:平方等于9,,49的数还有吗?意图: 这一环节主要是复习旧知识和提出问题,由上节课的“算术平方根”的求法使学生能明白“平方”和“算术平方根”的关系,让学生在几何图形中认识.熟悉它们的互化关系.并把上节课的思考题制作成FLASH情景引入,增加动画效果.效果:借助多媒体吸引学生的注意力,激发学生的学习兴趣.第二环节 : 新课学习(一)探究新知填空: 3=(9 ) (-3)=(9 ) ( )=9 0=0()=() (不存在)=-4 ()=() (二)形成概念(1)一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.而把正的平方根叫算术平方根。表
5、达式为:若x=a,那么x叫做a的平方根. 记作: 例如:(4) =16,则+4和-4都是16的平方根;即16的平方根是4; 4是16的算术平方根.(三)探索平方与开平方的关系:给出几组具体的数据,由平方探知开平方与平方的互逆关系.(四)概念辨析平方根与算术平方根的联系与区别:联系:1.包含关系:平方根包含算术平方根,算术平方根是平方根的一种. 2.只有非负数才有平方根和算术平方根.3. 0的平方根是0,算术平方根也是0.区别:1.个数不同:一个正数有两个平方根,但只有一个算术平方根. 2.表示法不同:平方根表示为 ,而算术平方根表示为意图:形成“平方根”的概念.在列举一些具体数据的感性认识基础
6、上,由平方运算反推出平方根的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化并,明白它们之间的互逆关系.,辨析概念 “平方根”与 “算术平方根”的区别与联系,使之与上一节课紧密联系.效果:由于遵循了从具体到抽象的过程,注重学生原有认知基础的回顾,并和原有的概念进行了比较与辨析,因此,学生对这一抽象的概念掌握得比较牢靠。第三环节 例题和新知巩固(一)例题示范求下列各数的平方根:(1)64;(2);(3) 0.0004;(4);(5) 11(1)解:, (2)解: (3)解: (4) 解: (5) 解:意图:这是书上的例题,要求学生能正确掌握平方根的文字说理及符号化的表达.能熟练地求出一个
7、数的平方根,然后由题中的数据探索出正数、0、负数的平方根的个数.效果:通过对例题的详解,学生能准确地书写表达,规范平方根的书写格式,掌握正确的符号化语言. (二)思考提升 , , 。 ,(三)巩固练习1 下列说法正确的是 25的平方根是5;-36的平方根是-6;平方根等于0的数是0;64的平方根是82下列说法不正确的是( ) (A)0的平方根是0 (B)的平方根是 (C)非负数的平方根是互为相反数 (D)一个正数的算术平方根一定大于这个数的相反数3. 已知一个自然数的算术平方根是a,则该自然数的下一个自然数的算术平方根是( ) (A) a+1 (B) (C) a2+1 (D) 4.为何值,有意
8、义?答:因为,所以 意图:围绕本节课的重点知识 (平方根)作适当的练习,在不同的变式练习中加深对平方根意义的理解. 效果:学生基本能水利解决这些问题,并利用探索的规律进行规范的表达.第四环节 课堂小结内容:引导学生总结本课时的知识、方法。意图:让学生对所学的知识进行梳理,使之思路清晰,既巩固了有关知识,又培养了学生良好的学习习惯.效果:在老师的引导下学生自己总结本节课的知识、方法,如:平方根的概念:若,则x叫a的平方根,平方根的个数:正数有2个平方根,0的平方根是0,负数没有平方根.平方与开方之间的关系;求平方根的方法:求一个数的平方根就是转化寻找哪个数平方等于这个数.第五环节 提高训练内容:
9、1.的小数部分为,的小数部分为,求的值. 2.已知实数,满足若,为的两边,求第三边的取值范围;若,为的两边,第三边等于5,求的面积. 意图:安排了两道题,其中最后一题是用算术平方根的意义来解决三角形的问题,这一环节主要针对层次较好的学生提供的题.可供老师根据教学的实际情况灵活处理.第六环节作业布置习题2八、教学设计反思本节课是八年级上册第二章平方根的第二课时.主要知识是平方根的学习和运用.教材是教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整. ()注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质
10、特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很必要的.所以在学习平方根的概念时,对正数有两个平方根学生不太容易接受,往往丢掉负的平方根,因为这与他们以前的经验不符.对此,在平方根的引入时,可多提一些具体的问题.如“9的算术平方根是3,也就是说,3的平方是9.还有其他的数,它的平方也是9吗?”等等,旨在引起学生的思考,让学生从具体的例子中抽象出初步的平方根的概念.再让学生去讨论:一个正数有几个平方根?0有几个平方根?负数呢?引导学生更深刻地理解平方根的概念,然后通过具体的求平方根的练习,巩固新学的概念.()鼓励学生进行探究和交流 本节课为学生提供了有趣而富有数学含义的问题,让学生进行充分的探索和交流.如:把正方形的面积不断的扩大为2倍、3倍、n倍,来引导学生充分进行交流、讨论与探索等数学活动,从中感受学习平方根的必要性.()设计之中多处运用类比的方法,使学生清楚新旧知识的区别和联系.类比概念:“平方根”和“算术平方根”的区别和联系,“平方”和“开平方”运算.(4)根据学生实际,灵活使用教材教材上只安排了一道例题和几个想一想,为了让学生对新知巩固,我增加了部分练习题,围绕“平方根”这一知识点进行各种题型的变式练习. 当然,选题要有层次,有梯度.老师们在进行教学时可以根据学生的实际情况作适当的取舍.
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100