ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:1.10MB ,
资源ID:7448071      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7448071.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(秋八年级数学上册 第1章 分式复习教案(新版)湘教版-(新版)湘教版初中八年级上册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

秋八年级数学上册 第1章 分式复习教案(新版)湘教版-(新版)湘教版初中八年级上册数学教案.doc

1、第1章 分式教学目标1 使学生系统了解本章的知识体系及知识内容;2 进一步了解分式的基本性质、分式的运算法则以及整数指数幂,会熟练地进行分式的运算。重点、难点重点:梳理知识内容,形成知识体系。难点:熟练进行分式的运算。教学过程一 知识结构与知识要点1浏览第2章目录,阅读p 61-63 复习与小结2 这章学习了哪些内容?(学生交流)教师投影本章知识结构图3 你还记得下面知识要点吗?(1)什么叫分式?设f、g都是整式,且g中含有字母,我们把f除以g所得的商记作,把叫做分式。(2)分式基本性质设h0,则即:分式的分子与分母同时乘以一个非零的多项式,所得分式与原分式相等;分式的分子分母同时约去公因式,

2、所得分式与原分式相等。(3)分式的符号变换法则是什么? 形象的理解为:分式的分子分母的符号可以移动(4)分式的运算法则分式的乘法:可以先把分子、分母分别相乘再约分,也可以先约分再分子、分母分别相乘。分式的除法:,分式除以分式,把被除式的分子分母颠倒位置后,与被除式相乘。分式加减法:同分母:,分母不变,分子相加减。异分母:先通分,化为同分母的分子然后相加减。怎样找最简公分母?系数:取各分母的系数最少公倍数。字母因式:取所有的,指数最高的。(5)整数指数幂的运算法则同底数的幂的除法:零次幂和负整数指数幂:,整数指数幂有哪些运算法则:设a0,m,n都是整数,则:二 例题精讲w W w .x K b

3、1.c o M例1 填空:当x=_,分式无意义。当x=_时,=0提醒:分式值为零除了分子为零外,还需要分母不等于零。而分式有意义的条件只要分母不等于零,与分子无关。思考:分式在什么条件下值为零呢?例2 请你先化简,再选一个你喜欢的a的值代入求值。解:估计学生会有人选a=1,这时可以让学生交流,这样的取值是否合适。例3 已知。解法1:解法2:三 课堂练习,巩固提高 1、(2008金华) 若分式的值为0,那么x的值为_.2、(2008成都) 化简:四 反思小结,拓展提高这节课你有什么收获?五 作业教学后记:http:/ww w.xkb 小结与复习(2)-可化为一元一次方程的分式方程(第2课时)教学

4、目标1 使学生了解分式方程的概念,进一步掌握分式方程的解法;2 会列分式方程解应用题.重点:分式方程的解法和应用 难点:分式方程的应用教学过程一 知识要点 做一做:1解方程:解:两边同乘以x(x-2),得:5+3(x-2)=x去分母,得:5+3x-6=x移项,得: 2x=1 所以,x=检验:当x=时,x(x-2)0,所以x=是原方程的解.思考:1 什么叫分式方程?分母里含有未知数的方程叫分式方程.2 解方式方程的思路是什么?有哪些步骤?解分式方程为什么会产生增根?解分式方程的思路:去分母化为整式方程.解分式方程的步骤:方程两边同乘以最简公分母去掉分母,化为整式方程;解整式方程检验下结论.解分式

5、方程产生增根的原因:去分母后,方程中未知数的范围扩大了.2 甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了两小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行速度和骑自行车的速度分别是多少?解:设步行得速度是x千米/时,则骑车的速度是4x/时依题意得:两边同乘以4x,得:28+12=8x所以,x=5,检验:当x=5时,4x0,所以,x=5是原方程的解.4x=20答:步行速度是5千米/时,骑车的速度是20千米/时.思考:解分式方程有哪些步骤?(1) 审题-注意理解题意,抓关键语句.可以借助图表,(2) 设元-注意带单位.(3) 解分式方程(4) 检验-

6、既要检验是不是原方程的解,还要检验是否合题意.二 讲解例题例1 解方程:,两边同乘以x(x+3)(x-1),得:5(x-1)-(x+3)=0去括号,得:5x-5-x-3=0,4x-8=0,4x=8,x=2,检验:当x=2时,x(x-1)(x+3)0,所以,x=2是原方程的解.例2 为了支援四川人民抗震救灾,某休闲用品公司主动承担了灾区生产2万顶帐篷的任务,计划10天完成.(1) 按此计划,该公司平均每天应生产帐篷_顶.(2) 生产2天后,公司又从其他部门抽调了50名工人参加帐篷生产,同时通过技术革新等手段使每位工人的效率比原计划提高了25%,结果提前2天完成了任务,求该公司原计划安排多少名工人

7、生产帐篷?解:(1)该公司原计划平均每天应生产:2000010=2000(顶)(2)设原来有x名工人,每人每天生产:,依题意得:2 + =10-2,或者:解得:x=750,经检验:x=750是原方程的解.答:该公司原计划安排750名工人生产帐篷.三 课堂练习1方程的根为增根,则m的值为( )A 3 B 4 C 5 D 6解:方程两边同乘以x-3,得:2x-(x-3)=m, x=m-3因为方程的根为增根,所以,m-3=3,m=6故选D.2 一列火车从车站开出,预计行程450千米,当它出发3小时后,因特殊情况而多停了一站,因此耽误了30分钟,后来把速度提高了20%,结果准时到达目的地,求这列火车原

8、来的速度.解:设这列火车原来的速度为x千米/时.依题意,得:解得:x=75,当x=75时,1.2x0,所以,x=75是原方程的解.答:这列火车原来的速度是75千米/时.四 反思小结,巩固提高 这节课你有什么收获?这节课我们主要复习了分式方程的解法和应用.解分式方程时,应该主要检验.作业:教学后记:小结与复习(3)(第3课时)学习目标: 1、能熟练地解可化为一元一次方程的分式方程。2、通过分式方程的应用,培养学生数学应用意识3. 使学生有目的的梳理知识,形成这一章完整的知识体系.4. 使学生在总结学习经验和活动经验的过程中,体验因学习方法的大力改进而带来的快乐,成为一个乐于学习的人.学习过程:1、解方程: (1)、 (2)、 (3)、2.分式方程的应用:(1)甲、乙两地相距360km,新修的高速公路开通后,在甲、乙两地间行驶的长途客运车平均车速提高了50%,而从甲地到乙地的时间缩短了2h。试确定原来的平均速度。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服