ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:18.50KB ,
资源ID:7445997      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7445997.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(安徽省安庆市桐城吕亭初级中学七年级数学下册 平行线的性质教学设计1 新人教版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

安徽省安庆市桐城吕亭初级中学七年级数学下册 平行线的性质教学设计1 新人教版.doc

1、平行线的性质教学设计教学建议1、教材分析(1)知识结构平行线的性质: (2)重点、难点分析本节内容的重点是平行线的性质教材上明确给出了“两直线平行,同位角相等”推出“两直线平行,内错角相等”的证明过程而且直接运用了“”、“”的推理形式,为学生创设了一个学习推理的环境,对逻辑推理能力是一个渗透因此,这一节课有着承上启下的作用,比较重要学生对推理证明的过程,开始可能只是模仿,但在逐渐地接触过程中,能最终理解证明的步骤和方法,并能完成有两步推理证明的填空本节内容的难点是理解平行线的性质与判定的区别,并能在推理中正确地应用它们由于学生还没学习过命题的概念和命题的组成,不知道判定和性质的本质区别和联系是

2、什么,用的时候容易出错在教学中,可让学生通过应用和讨论体会到,如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果由两直线平行,得出角的关系,就是平行线的性质2、教法建议由上面的重点、难点分析可知,这节课也是对前面所学知识的复习和应用要有一定的综合性,推理能力也有较大的提高知识多,也有了一些难度但考虑到学生刚接触几何,进度不可过快,尽量多创造一些学习、应用定理、公理的机会,帮助学生理解平行线的判定与性质(1)讲授新课首先,提出本节课的研究问题:如果两直线平行,同位角、内错角、同旁内角有什么关系吗?探究实验活动还是从画平行线开始,得出两直线平行,同位角相等后,再推导证明出其它的两个性质

3、教师可以用“”、“”的推理证明形式板书证明过程,学生在理解推理证明的过程中,欣赏到数学的严谨的美(2)综合应用理解平行线的判定和性质区别,并能在推理过程中正确地应用它们成为了教学难点老师可以设计一些有两步推理的证明题,让学生填充理由在应用知识的过程中,组织学生进行讨论,结合题目的已知和结论,让学生自己总结出判定和性质的区别,只有自己构造起的知识,才能真正地被灵活应用(3)适当总结几何的学习,既可以培养学生的逻辑思维能力,也可以培养学生分析问题,解决问题的能力对于好的学生,可以引导他们总结如何学好几何注意文字语言,图形语言,符号语言间的相互转化对简单的题目,能做到想得明白,写得清楚,书写逐渐规范

4、 教学目标:1.使学生理解平行线的性质,能初步运用平行线的性质进行有关计算2.通过本节课的教学,培养学生的概括能力和“观察猜想证明”的科学探索方法,培养学生的辩证思维能力和逻辑思维能力3.培养学生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性教学重点:平行线性质的研究和发现过程是本节课的重点教学难点:正确区分平行线的性质和判定是本节课的难点教学方法:开放式教学过程:一、复习1.请同学们先复习一下前面所学过的平行线的判定方法,并说出它们的已知和结论分别是什么?2、把这三句话已知和结论颠倒一下,可得到怎样的语句?它们正确吗?3、是不是原本正确的话,颠倒一下前后顺序,得到新的一句

5、话,是否一定正确?试举例说明。如、“若a=b,则a2=b2”是正确的,但“若a2=b2,则a=b”是错误的。又如“对顶角相等”是正确的。但“相等的角是对顶角”则是错误的。因此,原本正确的话将它倒过来说后,它不一定正确,此时它的正确与否要通过证明。二、新课1、我们先看刚才得到的第一句话“两直线平行,同位角相等”。先在请同学们画两条平行线,然后画几条直线和平行线相交,用量角器测量一下,它们产生的几组同位角是否相等?上一节课,我们学习的是“同位角相等,两直线平行”,此时,两直线是否平行是未知的,要我们通过同位角是否相等来判定,即是用来判定两条直线是否平行的,故我们称之为“两直线平行的判定公理”。而这

6、句话,是“两直线平行,同位角相等”是已知“平行”从而得到“同位角相等”,因为平行是作为已知条件,因此,我们把这句话称为“平行线的性质公理”,即:两条平行线被第三条线所截,同位角相等。简单说成:两直线平行,同位角相等。2、现在我们来用这个性质公理,来证明另两句话的正确性。想想看,“两直线平行,内错角相等”这句话有哪些已知条件,由哪些图形组成?已知:如图,直线ab求证:(1)14;(2)12180证明:ab(已知)1=3(两直线平行,同位角相等)又34(对顶角相等)14(2)ab(已知)13(两直线平行,同位角相等)又23180(邻补角的定义)12180思考:如何用(1)来证明(2)?例1、如图,是梯形有上底的一部分,已经量得1115,D100,梯形另外两个角各是多少度?解:梯形上下底互相平行A与B互补,D与C互补B18011565C18010080答:梯形的另外两个角分别是65,80练习:P79 1、2、3小结:平行性质与判定的区别

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服