ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:1,019.04KB ,
资源ID:7434029      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7434029.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(基于HALCON的喷码光学字符识别.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

基于HALCON的喷码光学字符识别.doc

1、研究生 《机器视觉》 课程论文 题目 (中文): 基于HALCON的喷码光学字符识别 (英文): Based on HALCON equipments of optical character recognition 姓 名 学 号 院 (系) 专业、年级 任 课 老 师 2015 年 6 月 30 日 基于HALCON的喷码光学字符识别 湖南理工学院信息与通信工程学院 摘要:大规模自动化流水线生产的化妆品,其批次

2、信息对仓储管理系统至关重要。因此有必要研究一种运行速度快、识别率高和鲁棒性好的瓶底喷码字符识别系统。现有基于机器视觉的智能检测技术是实现其生产质量快速、自动检测与控制的新型重要手段。在此基础上,本文介绍了基于HALCON机器视觉软件的检测系统和针对化妆品瓶底批号的图像处理关键技术,包括灰度值调整、形态学运算、字符分割及识别数字对象。 关键词:机器视觉;HALCON;批号检测;OCR图像处理 1.引言 随着计算机软件、硬件的发展,数字图像处理的理论和方法不断完善,利用机器视觉实现产品质量无接触自动检测的技术已逐渐变得切实可行,因此我们尝试将机器视觉技术应用于包装批号检测中,以实现生

3、产的快速、自动检测与控制。机器视觉又称计算机视觉,是用计算机来实现人的视觉功能,也就是用机器代替人眼来做测量和判断[1-2]。机器视觉技术包含光源照明技术、光成像技术、传感器技术、数字图像处理技术、机械工程技术、检测控制技术、模拟与数字视频技术、计算机技术、人机接口技术等相关技术[3-5],是实现计算机集成系统的基础技术。 机器视觉目前应用极其广泛,例如利用人脸、 虹膜、 指纹等识别技术来实现安保功能;利用视觉监控系统识别环境中发生的异常事件,如陌生人的侵入、异常行动;利用视频监控技术的智能交通管理系统、视频检索;用于军事目的的自动目标检测等[6],都应用机器视觉技术来解决问题。正如视觉是人

4、类在自然环境与社会环境生存不可缺少的最重要感知器官,机器视觉也是信息技术中一门至关重要的技术。 1.1.HALCON软件简介 德国 MVtec公司的图像处理软件HALCON,是世界公认具有最佳效能的机器视觉软件。它发源自学术界,由一千多个各自独立的函数,以及底层的数据管理核心组成。其中包含了各类滤波、色彩分析及几何、数学变换、形态学计算分析、校正、分类、辨识、形状搜索等等基本的几何及图像计算功能。它提供了一个全面的视觉处理库,包含了所有标准和高级的图像处理方法,覆盖了从不同的硬件采集图像到高级的模式匹配算法;提供了机器视觉应用程序中通常所需要的一些工具,如文件处理、数据分析、

5、算法操作或分类等。另外,它还具有快速原型化和开放结构的重要特征,通过交互编程环境迅速开发机器视觉应用程序,或加入新的算子来融合自己的视觉功能。本文利用 HALCON机器视觉软件实现对化妆品底盖喷码字符识别。 1.2.OCR研究现状 OCR的概念是在1929年由德国科学家Tausheck最先提出来的,后来美国科学家Handel也提出了利用技术对文字进行识别的想法。而最早对印刷体汉字识别进行研究的是IBM公司的Casey和Nagy,1966年他们发表了第一篇关于汉字识别的文章,采用了模板匹配法识别了1000个印刷体汉字。 早在60、70年代,世界各国就开始有OCR的研究,而研究的初期,

6、多以文字的识别方法研究为主,且识别的文字仅为0至9的数字。以同样拥有方块文字的日本为例,1960年左右开始研究OCR的基本识别理论,初期以数字为对象,直至1965至1970年之间开始有一些简单的产品,如印刷文字的邮政编码识别系统,识别邮件上的邮政编码,帮助邮局作区域分信的作业;也因此至今邮政编码一直是各国所倡导的地址书写方式。 20世纪70年代初,日本的学者开始研究汉字识别,并做了大量的工作。中国在OCR技术方面的研究工作起步较晚,在70年代才开始对数字、英文字母及符号的识别进行研究,70年代末开始进行汉字识别的研究,到1986年,我国提出“863”高新科技研究计划,汉字识别的研究进入一个实

7、质性的阶段,清华大学的丁晓青教授和中科院分别开发研究,相继推出了中文OCR产品,现为中国最领先汉字OCR技术。早期的OCR软件,由于识别率及产品化等多方面的因素,未能达到实际要求。同时,由于硬件设备成本高,运行速度慢,也没有达到实用的程度。只有个别部门,如信息部门、新闻出版单位等使用OCR软件。进入20世纪90年代以后,随着平台式扫描仪的广泛应用,以及我国信息自动化和办公自动化的普及,大大推动了OCR技术的进一步发展,使OCR的识别正确率、识别速度满足了广大用户的要求。 2. 图像处理关键技术 针对喷码光学字符检测,我们采用HALCON软件的OCR图像处理方法。OCR就是用于阅读和识别

8、符号的方法,它被定义成解释图像某区域的任务,这些区域包括独立的字符,因此我们可以用OCR对批号中的单个数码标志进行读取。其基本步骤为:获取图像、处理图像、分割图像、调用或训练分类器、读取标志、显示结果、销毁分类器。 2.1获取图像 利用HALCON软件进行的检测系统是离线检测,因此预先采用外部设备采集图像,调用HALCON软件中的算子“read_image”读取图像,如图一。 图一 待处理的原始图像 2.2图像预处理 采集后的图像需要经过一定的预处理,使其区域特征更加明显,便于后续的批号数码判断操作。 2.2.1图像灰度化 为了得到更清晰的喷码

9、批次信息,我们需要将批次信息从背景中提取出来,消除噪声,以降低后续步骤的难度。因此调用rgb1_to_gray算子将图片进行灰度化处理。如图二。 图二 灰度图像 2.2.2获得喷码区域 HALCON中的OCR图像处理都是针对某一特定图像,获得目标区域的方法众多,例如根据图像大小画出矩形框标记目标区域的位置或者采用固定的阈值进行图像分割。由于图像的个体差异,目标区域的位置会发生变化,因此需要反复更新阈值,过程繁琐且效率低。由于瓶底上待识别的字符都是喷印的印刷体符号,每个字符都是由很多小圆点拼凑而成,依据此特点,可以直接调用HALCON中dot

10、s_image 算子直接获取喷码区域,如图三。 图三 喷码区域 2.2.3阈值分割 图像灰度的高阶特征反映了缺陷的微小细节、图像成像的曝光特性和噪声干扰等特性[7]。为了得到更清晰的喷码批次信息,我们需要采用阈值分割的方法将批次信息从背景中提取出来,基于阈值分割方法是一种应用十分广泛的图像分割技术。阈值分割方法的实质是利用图像的灰度直方图信息得到分割的阈值。它用一个或几个阈值将图像的灰度级分成几个部分,认为属于同一个部分的像素是同一个物体。阈值分割方法的最大特点是计算简单,在实时图像处理中,它得到了广泛的应用。但由于图像的个体差异性,阈值分割时不可能采用单一阈值对图像进行分割。本文

11、先采用intensity算子计算灰度值的平均值和偏差。再调用threshold算子调节灰度值,使数字特征变为明显。如图四。 图四 分割图像 2.2.4形态学运算 由于喷码字体均为7行5列的点阵字体,如果直接进行光学字符识别,喷码质量或者瓶底杂质等因素对结果影响大。因此为了消除点阵变形等影响,需要利用数学形态学的方法对图像进行膨胀处理。 数学形态学是一种非线性滤波方法,可以用于抑制噪声、特征提取、边缘检测、图像分割等图像处理问题。在形态学操作中,最基本的操作是膨胀和腐蚀。在实际应用中,膨胀和腐蚀运算常常都是级联复合使用,对图像先做膨胀运算,再对膨胀后的图像做腐蚀运算,或先

12、对图像做腐蚀运算,再对腐蚀后的图像做膨胀运算,称为开启和闭合。这样的图像中小于结构元的一些细节被滤除,同时使保留的图像特征集合不失真,相当于对图像进行了平滑滤波。 本文利用数学形态学的闭运算对图像进行处理,填补点阵字体中的空洞使其成为一个完整的字符,为了满足实际需求,利用圆形和矩形两种结构元素对图像实行闭运算处理。其处理结果如图五。 图四 形态学处理后图像 2.2.5字符分割 调用connection算子将整个图像的字符分割成独立的个体;调用 select_shape选择特征区域。使用sort_region将数字从左至右排列,其结果如图五。

13、图五 字符分割 2.2.5识别数字 本文直接调用HALCON中已有的分类器‘DotPrint.omc’,利用 for循环将由 do_ocr_multi_class_mlp得到的字符串显示在序号为WindowID的窗口上。 图六为利用训练好的OCR分类器识别的图像。 图五 识别图像 2.3主要程序 *图像灰度化和特征区域提取 rgb1_to_gray(Image, Imagegray) dots_image (Imagegray, DotImage, 5, 'dark', 2) *计算灰度值的平均值和偏差,阈值分割。数据显示在变量窗口 intensity (Image

14、gray, Imagegray, Mean, Deviation) threshold (DotImage, Region, Mean-105, 255) *形态学运算操作 目的就是要将单体字符连在一起 closing_circle (Region, ClosedPatterns, 5) gen_rectangle2 (Rectangle, 10, 10, rad(45), 3, 0) closing (ClosedPatterns, Rectangle, RegionClosing3) gen_rectangle2 (Rectangle, 10, 10, rad(135),

15、 3, 0) closing (RegionClosing3, Rectangle, RegionClosing4) *根据特征选择区域 connection (RegionClosing4, ConnectedRegions) select_shape (ConnectedRegions,SelectedRegions, ['area','height'], 'and',[100,50], [1000,70]) *排序为下步识别做准备,计算得到目标区域面积,行列等参数 sort_region(SelectedRegions, SortedRegions, 'character',

16、 'true', 'column') area_center(SortedRegions, Area, Row, Column) *识别阶段 FontName:='DotPrint.omc' read_ocr_class_mlp(FontName, OCRHandle) *分类器采用‘DotPrint' do_ocr_multi_class_mlp (SortedRegions, Image, OCRHandle, RecNum, Confidence) *RecNum代表显示出的数据,变量窗口显示出识别出的字符和自信度 set_display_font (3600, 27,

17、 'mono', 'true', 'true') for i := 0 to |RecNum| - 1 by 1 disp_message (3600, RecNum[i], 'image', 12, Column[i], 'green', 'false') *string表示要在窗口显示的字符串,coordsystem可以设为‘window’或者‘image',color字符显示颜色,row.colum代表字符显示的行列位置,BOX表示字符是显示在框内还是无框 endfor clear_ocr_class_mlp (OCRHandle) 3. 总结 使用人工

18、对大规模自动化流水线生产的商品进行批次信息采集,工作量大,速度慢,与上位机交接困难。采用机器视觉方法进行此项工作则大幅度降低成本、 增加效率和提高准确率。随着图像识别技术的发展,利用机器视觉代替人眼将是不可逆转的趋势。本文所采用的方法可以高效率高精准度的检测包装瓶喷码,但仍存在后续需研究的问题,例如训练OCR分类器,并且本文中的方法仅适用同一类型喷码,可以进行更深入的改进研究也可尝试利用基于模板匹配的方法进行分类检测。 4.参考文献 [1] 赵杰文,陈振涛,邹小波.机器视觉实现方便面破损在线检测的研究[J].微计算机信息,2007,23(10):238-240. [2] 席斌,钱峰.机器

19、视觉测量系统在工业在线检测中的应用[J].工业控制计算机,2005,18(11):75-76. [3] 兰海军,文友先.机器视觉技术的发展和应用[J].湖北农机化,2007,(5):30-32. [4] 封帆.基于智能机器视觉的针剂生产线安瓶检测识别系统[J].自动化博览,2007,(2):40-41. [5] 高潮,任可,郭永彩.基于机器视觉的裂纹缺陷检测技术[J].航空精密制造技术,2007,43(5):23-25. [6] Mori S.Historical review of OCR research and development[J]. Proceedings of IEEE,1992,80(7):1029-1058. [7]贺鑫, 小包烟包装质量机器视觉检测关键技术研究[J].包装工程,2007,28(8):102-105.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服