ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:118.09KB ,
资源ID:7427866      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7427866.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(数据结构实验(5).doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数据结构实验(5).doc

1、计算机系数据结构实验报告(1)姓名: 孟红波 学号: 6100410179 专业班级: 卓越101班 实验目的:深入研究数组的存储表示和实现技术,着重掌握对稀疏矩阵的表示方法及其运算的实现。问题描述:稀疏矩阵是指那些多数元素为零的矩阵。利用稀疏特点进行存储和计算可以大大节省存储空间,提高效率。通过对稀疏矩阵的存储表示,实现矩阵的基本操作。实验要求:文法是一个四元1、要求矩阵的输入形式采用三元组表示,以“带行逻辑链接信息”的三元组顺序表表示稀疏矩阵。2、设计矩阵的逆置算法,实现矩阵的逆置。3、实现两个稀疏矩阵的相加、相减和相乘等运算。4、要求运算结果的矩阵则以通常的数组形式出现。 实验内容和过程

2、:实验步骤1、 首先应输入矩阵的行数和列数、并判别给出的两个矩阵的行、列数对于所要求的运算是否相匹配;2、 以三元组的形式输入矩阵;3、 调用矩阵的逆置子函数、相加函数和相乘函数;4、 分析输出结果,并进行总结。 输入数据:2 1 00 0 00 0 32 0 01 0 00 0 3-12 1 00 0 00 0 30 0 00 0 00 0 2+=2 1 00 0 00 0 52 1 00 0 30 00 00 2*=0 00 6实验程序:#include #include using namespace std; const int MAXSIZE=100; const int MAXRO

3、W=10; typedef struct int i,j; int e; Triple; typedef struct Triple dataMAXSIZE+1; int mu,nu,tu; TSMatrix; typedef struct Triple dataMAXSIZE+2; int rposMAXROW+1; int mu,nu,tu; RLSMatrix; template bool InPutTSMatrix(P & T,int y) cout输入矩阵的行,列和非零元素个数:T.muT.nuT.tu; cout请输出非零元素的位置和值:endl; int k=1; for(;kT

4、.datak.iT.datak.jT.datak.e; return true; template bool OutPutSMatrix(P T) int m,n,k=1; for(m=0;mT.mu;m+) for(n=0;nT.nu;n+) if(T.datak.i-1)=m&(T.datak.j-1)=n) cout.width(4); coutT.datak+.e; else cout.width(4); cout0; coutendl; return true; bool TransposeSMatrix( ) TSMatrix M,T; /定义预转置的矩阵 InPutTSMatri

5、x(M, 0); /输入矩阵 int numMAXROW+1; int cpotMAXROW+1; / 构建辅助数组 int q,p,t; T.tu=M.tu; T.mu=M.nu; T.nu=M.mu; if(T.tu) for(int col=1;col=M.nu;col+) numcol=0; for(t=1;t=M.tu;t+) +numM.datat.j; cpot1=1; for(int i=2;i=M.nu;i+) cpoti=cpoti-1+numi-1; / 求出每一列中非零元素在三元组中出现的位置 for(p=1;p=M.tu;p+) col=M.datap.j; q=cp

6、otcol; T.dataq.i=col; T.dataq.j=M.datap.i; T.dataq.e=M.datap.e; +cpotcol; cout输入矩阵的转置矩阵为endl; OutPutSMatrix(T); return true; bool Count(RLSMatrix &T) int numMAXROW+1; for(int col=1;col=T.mu;col+) numcol=0; for(col=1;col=T.tu;col+) +numT.datacol.i; T.rpos1=1; for(int i=2;i=T.mu;i+) T.rposi=T.rposi-1+

7、numi-1; return true; bool MultSMatrix ( ) RLSMatrix M,N,Q; InPutTSMatrix(M,1); InPutTSMatrix(N,1); Count(M); Count(N); if(M.nu!=N.mu) return false; Q.mu=M.mu; Q.nu=N.nu; Q.tu=0; / Q初始化 int ctempMAXROW+1; int arow,tp,p,brow,t,q,ccol; if(M.tu*N.tu) for( arow=1;arow=M.mu;arow+) /memset(ctemp,0,N.nu); f

8、or(int x=1;x=N.nu;x+) ctempx=0; Q.rposarow=Q.tu+1; if(arowM.mu) tp=M.rposarow+1; else tp=M.tu+1; for(p=M.rposarow;ptp;p+) brow=M.datap.j; if(browN.mu) t=N.rposbrow+1; else t=N.tu+1; for(q=N.rposbrow;qt;q+) ccol=N.dataq.j; ctempccol += M.datap.e*N.dataq.e; for(ccol=1;ccolMAXSIZE) return false; Q.data

9、Q.tu.e=ctempccol; Q.dataQ.tu.i=arow; Q.dataQ.tu.j=ccol; OutPutSMatrix(Q); return true; typedef struct OLNode int i,j; int e; struct OLNode *right,*down; OLNode,*OLink; typedef struct OLink *rhead,*chead; int mu,nu,tu; CrossList; bool CreateSMatrix_OL(CrossList & M) int x,y,m; cout请输入矩阵的行,列,及非零元素个数M.

10、muM.nuM.tu; if(!(M.rhead=(OLink*)malloc(M.mu+1)*sizeof(OLink) exit(0); if(!(M.chead=(OLink*)malloc(M.nu+1)*sizeof(OLink) exit(0); for(x=0;x=M.mu;x+) M.rheadx=NULL; / for(x=0;x=M.nu;x+) M.cheadx=NULL; cout请按三元组的格式输入数组:endl; for(int i=1;ixym; OLink p,q; if(!(p=(OLink)malloc(sizeof(OLNode) exit(0); p-i

11、=x; p-j=y; p-e=m; if(M.rheadx=NULL|M.rheadx-jy) p-right=M.rheadx; M.rheadx=p; else for(q=M.rheadx;(q-right)&(q-right-jright); p-right=q-right; q-right=p; / 完成行插入 if(M.cheady=NULL|M.cheady-ix) p-down=M.cheady; M.cheady=p; else for(q=M.cheady;(q-down)&(q-down-idown); p-down=q-down; q-down=p; / 完成列插入 r

12、eturn true; bool OutPutSMatrix_OL(CrossList T) for(int i=1;i=T.mu;i+) OLink p=T.rheadi; for(int j=1;jj) coutsetw(3)e; p=p-right; else coutsetw(3)0; coutendl; return true; bool AddSMatrix() CrossList M,N; CreateSMatrix_OL(M); CreateSMatrix_OL(N); cout输入的两矩阵的和矩阵为:endl; OLink pa,pb,pre ,hlMAXROW+1; / f

13、or(int x=1;x=M.nu;x+) hlx=M.cheadx; for(int k=1;ke=pb-e; p-i=pb-i; p-j=pb-j; if(NULL=pa|pa-jpb-j) if(NULL=pre) M.rheadp-i=p; else pre-right=p; p-right=pa; pre=p; if(NULL=M.cheadp-j) M.cheadp-j=p; p-down=NULL; else p-down=hlp-j-down; hlp-j-down=p; hlp-j=p; pb=pb-right; else if(NULL!=pa)&pa-jj) pre=pa

14、; pa=pa-right; else if(pa-j=pb-j) pa-e += pb-e; if(!pa-e) if(NULL=pre) M.rheadpa-i=pa-right; else pre-right=pa-right; p=pa; pa=pa-right; if(M.cheadp-j=p) M.cheadp-j=hlp-j=p-down; else hlp-j-down=p-down; free(p); pb=pb-right; else pa=pa-right; pb=pb-right; OutPutSMatrix_OL(M); return true; int main()

15、 cout.fill( ); / system(color 0C); cout.fill( ); cout请选择要进行的操作:endl; cout1:矩阵的转置endl; cout2:矩阵的加法或减法endl; cout3:矩阵的乘法endl; cout4:退出程序endl; char c=getchar(); if(c=1) TransposeSMatrix( ); else if(c=2) AddSMatrix(); else if(c=3) MultSMatrix (); / else exit(0); /退出 return 0;实验结果:矩阵的逆置矩阵的加减法矩阵的乘法思考题1、 如何

16、提高矩阵转置算法效率?#include void main(void) const int SIZE=11; int gridSIZESIZE; int gridTSIZESIZE; int i,j; for(i=0;iSIZE;i+) for(j=0;jSIZE;j+) coutInput the Value of i , jgridij; for(i=0;iSIZE;i+) for(j=0;jSIZE;j+) gridTij=gridji; cout原始矩阵endl; for(i=0;iSIZE;i+) for(j=0;jSIZE;j+) coutgridij ; coutendl; cout转置矩阵endl; for(i=0;iSIZE;i+) for(j=0;jSIZE;j+) coutgridTij ; coutendl; 2、 如果用十字链表方式表示稀疏矩阵的话,如何来实现矩阵的相加操作呢?总结和感想: 通过实验,我数组的存储表示和实现技术,对矩阵的逆置、矩阵的加减运算和乘除运算有更深的了解,能熟练运用矩阵进行相关的操作。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服