ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:145KB ,
资源ID:7418475      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7418475.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(黑龙江省虎林市八五零农场学校八年级数学下册 19.1.2 平行四边形的判定(2)教案 人教新课标版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

黑龙江省虎林市八五零农场学校八年级数学下册 19.1.2 平行四边形的判定(2)教案 人教新课标版.doc

1、19.1.2 平行四边形的判定(2)第四课时 教学目标 知识与技能: 理解和领会三角形中位线的概念,掌握三角形中位线定理及其应用 过程与方法: 经过探索三角形中位线定理的过程,理解它与平行四边形的内在联系,感悟几何学的推理方法 情感态度与价值观: 培养学生合情推理意识,形成几何思维分析思路,体会几何学在日常生活中的应用价值 重难点、关键 重点:理解并应用三角形中位线定理 难点:理解三角形中位线定理的推导,感悟几何的思维方法 关键:应用平行四边形的知识解决三角形中位线定理的证明,以“加倍法”来构建平行四边形 教学准备 教师准备:直尺、圆规;补充本节课资料 学生准备:预习本节课内容 学法解析 1认

2、知起点:三角形、平行四边形有关知识2知识线索: 3学习方式:采用“讲授法”教学,学生以观察、分析、探讨的方式学习 教学过程 一、回顾交流,归纳提升 【课堂温习】 教师提问:1平行四边形的定义是什么? 2平行四边形具有哪些性质? 3平行四边形是如何判定的?教师板书:画出一个平行四边形,如下图(帮助理解) 学生活动:踊跃发言,相互讨论,归纳出平行四边形的性质与判定 【课堂演练】(教师板书)演练题:如图,平行四边形ABCD中,对角线AC、BD相交于O,E、F分别为BO、DO的中点求证:AFCE(请你用两种方法证明) 思路点拨:方法1:证明AOFCOE,推出AFE=CEF,从而得证AFCE方法2:连结

3、AE,CF,去证明四边形AECF为平行四边形 教师活动:组织学生完成“演练题”,巡视、关注“学困生”,对于思路较好的学生,请他们完成后再上台演示教师注意纠正他们的书写 学生活动:独立完成“演练题”,结合本道题,回顾和应用平行四边形性质,判定【师生共识】 构图: 【设计意图】采用先回顾(提问式)平行四边形性质、判定,再通过“演练题”进行实际应用,这样不空洞,且能调动积极性,有利于归纳、提升 二、问题牵引,导入新知例4 如图,点D,E分别是ABC的边AB、AC的中点,求证DEBC,且DE=BC 思路点拨:对于证明某条线段是某条线段的一半,常用的几何方法是“加倍法”,“折半法”,通过三角形全等把问题

4、化归到平行四边形问题中去,然后再利用平行四边形的有关概念、性质来解决本题可以延长DE到F,使EF=DE,通过连结AF、FC、CD把问题转化到ADCF中去,再根据平行四边形性质证明DBCF 【活动方略】 教师活动:板书例4,分析并引导学生积极参与教会学生如何添加辅助线,如何书写辅助线的添加法,然后板书出例4的证明 学生活动:参与教师分析例4,学会“加倍法”的几何分析思路 教师板书例4证法:(见课本P98) 教师问题:还有没有不同于课本的证法呢? 学生活动:相互讨论,踊跃发言,想出不同的证法上讲台演示 参考证法: 证法:延长DE到F使得EF=DE,连结FC,证ADEFEC,得到AD=FC(割补法)

5、,再利用BDCF证出DBCF,从而得到DF=BC,推出DE=BC,DEBC能用折半法吗?试一试! 教师活动:归纳学生的不同证法,然后应用例4的结论导入新知:(口述后让学生翻开课本画一画) 三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线 三角形中位线定理:三角形中位线平行于三角形的第三边,且等于第三边的一半 教师提问:一个三角形有几条中位线?中位线和三角形的中线一样吗? 学生回答:有三条中位线,中位线是两边中点连线段;而中线是顶点和对边中点的连线段,因此它们不同 【设计意图】采用引例导入,丰富学生的联想,又能从中学会几何不同的证明方法 三、随堂练习,巩固深化 1课本P99 “练习”

6、1,2,3 2【探研时空】 如图,已知BE、CF分别为ABC中B、C的平分线,AMBE于M,ANCF于N,求证:MNBC(提示:延长AN,AM,证AN=NR,AM=MQ利用三角形中位线定理可证) 四、课堂总结,发展潜能 1三角形中位线定理:三角形两边中点的连线是三角形的中位线;三角形的中位线平行于第三边,并且等于第三边的一半三角形的中位线是三角形中一条重要的线段,三角形中位线定理在许多计算及证明中都要用到 2把握三角形中位线定理的应用时机: (1)题目的条件中出现两个或两个以上的线段中点; (2)题目的条件中虽然只有一个(线段的)中点,但过这点有直线平行于过中点所属线段端点的直线3利用三角形中

7、位线定理,添加辅助线的方法有: 五、布置作业,专题突破 1课本P100102 习题191 7,8,13,14 2选用课时作业优化设计六、课后反思 第四课时作业优化设计 【驻足“双基”】 1已知ABC中,AB:BC:CA=3:2:4且AB=9cm,D、E、F分别是AB、BC、AC的中点,则DEF的周长是_ 2已知ABC中,D、E分别是AB、AC的中点,F为BC上一点,EF=BC,EFC=35,则EDF=_ 3顺次连结四边形各边中点所得到的四边形是_4如图,ABC中,AD是BAC的平分线,CEAD于E,M为BC的中点,AB=14cm,AC=10cm,求ME的长 【提升“学力”】5已知ABC中,AD

8、BC于D,E、F、G分别是AB、BD、AC的中点,EGEF,AD+EF=9cm,求ABC面积6已知:在四边形ABCD中,ABCD,ABAD,AEB=CEDF为BC的中点求证:AF=DF=(BF+CE) 【聚焦“中考”】7如图,在ABCD中,E、F是对角线AC的两个三等分点,求证:四边形BFDE是平行四边形 8已知五边形ABCDE中,ACED,交BE于点P,ADBC,交BE于点Q,BECD,求证:BCPQDE答案:113.5cm 272.5 3平行四边形 4提示:延长CE交AB于T,2cm 5提示:AD=2EF,EF=3,AD=6,EG=EF=,BC=9,S=27 527cm2 6提示:延长BE、CD交于G, 如果只证AF=DF,那么过F作AD的垂线即可,现在要使AF、DF与BE+CE建立起联系,就应进一步观察图形的特点了注意到AEB=CED,CDAD,因此可通过延长BE、CD交于G,过CE与BE之和成为线段BG,接下来易见DF为BCG的中位线,至此,DF与BE+CE的关系已清楚了,同理可证AF=(BE+CE)7提示:连结DB 8由ACED,BECD可以推出PCDE,因此可得PC=ED,再由ACED,BCAD得到角BPC=QED,CBP=DQE,根据三角形全等条件可证得

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服