1、与三角形有关的角三角形的内角教学目标 掌握三角形内角和定理。重点难点 三角形内角和定理是重点;三角形内角和定理的证明是难点。教学过程 一、导入新课我们在小学就知道三角形内角和等于1800,这个结论是通过实验得到的,这个命题是不是真命题还需要证明,怎样证明呢?二、三角形内角和的证明回顾我们小学做过的实验,你是怎样操作的?把一个三角形的两个角剪下拼在第三个角的顶点处,用量角器量出BCD的度数,可得到A+B+ACB=1800。投影1 图1想一想,还可以怎样拼?剪下A,按图(2)拼在一起,可得到A+B+ACB=1800。 图2把和剪下按图(3)拼在一起,可得到A+B+ACB=1800。 如果把上面移动
2、的角在图上进行转移,由图1你能想到证明三角形内角和等于1800的方法吗?已知ABC,求证:A+B+C=1800。证明一过点C作CMAB,则A=ACM,B=DCM,又ACB+ACM+DCM=1800A+B+ACB=1800。即:三角形的内角和等于1800。由图2、图3你又能想到什么证明方法?请说说证明过程。三、例题例 如图,C岛在A岛的北偏东500方向,B岛在A岛的北偏东800方向,C岛在B岛的北偏西400方向,从C岛看A、B两岛的视角ACB是多少度? 分析:怎样能求出ACB的度数? 根据三角形内角和定理,只需求出CAB和CBA的度数即可。CAB等于多少度?怎样求CBA的度数?解:CBA=BAD
3、-CAD=800-500=300 ADBE BAD+ABE=1800ABE=1800-BAD=1800-800=1000ABC=ABE-EBC=1000-400=600ACB=1800-ABC-CAB=1800-600-300=900答:从C岛看AB两岛的视角ACB=1800是900。三角形的外角教学目标 1、理解三角形的外角;2、掌握三角形外角的性质,能利用三角形外角的性质解决问题。重点难点 三角形的外角和三角形外角的性质是重点;理解三角形的外角是难点。教学过程一、导入新课投影1如图,ABC的三个内角是什么?它们有什么关系?是A、B、C,它们的和是1800。若延长BC至D,则ACD是什么角?
4、这个角与ABC的三个内角有什么关系?二、三角形外角的概念 ACD叫做ABC的外角。也就是,三角形一边与另一边的延长线组成的角,叫做三角形的外角。想一想,三角形的外角共有几个?共有六个。注意:每个顶点处有两个外角,它们是对顶角。研究与三角形外角有关的问题时,通常每个顶点处取一个外角.三、三角形外角的性质容易知道,三角形的外角ACD与相邻的内角ACB是邻补角,那与另外两个角有怎样的数量关系呢?投影2如图,这是我们证明三角形内角和定理时画的辅助线,你能就此图说明ACD与A、B的关系吗?CEAB, A=1,B=2又ACD=1+2ACD=A+B你能用文字语言叙述这个结论吗?三角形的一个外角等于与它不相邻的两个内角之和。由加数与和的关系你还能知道什么?三角形的一个外角大于与它不相邻的任何一个内角。即 ,。四、例题投影3例 如图,1、2、3是三角形ABC的三个外角,它们的和是多少? 分析:1与BAC、2与ABC、3与ACB有什么关系?BAC、ABC、ACB有什么关系?解:1+BAC=1800,2+ABC=1800,3+ACB=1800,1+BAC+2+ABC+3+ACB=5400 又BAC+ABC+ACB=18001+2+3=3600。你能用语言叙述本例的结论吗?三角形外角的和等于3600。五、课堂小结1、什么是三角形的外角?2、三角形的外角有哪些性质?