1、221.3二次函数ya(xh)2k的图象和性质1经历二次函数图象平移的过程;理解函数图象平移的意义2了解yax2,ya(xh)2,ya(xh)2k三类二次函数图象之间的关系3会从图象的平移变换的角度认识ya(xh)2k型二次函数的图象特征重点从图象的平移变换的角度认识ya(xh)2k型二次函数的图象特征难点对于平移变换的理解和确定,学生较难理解一、复习引入二次函数yax2的图象和特征:1名称_;2.顶点坐标_;3.对称轴_;4.当a0时,抛物线的开口向_,顶点是抛物线上的最_点,图象在x轴的_(除顶点外);当a0时,抛物线的开口向_,顶点是抛物线上的最_点,图象在x轴的_(除顶点外)二、合作学
2、习在同一坐标系中画出函数yx2,y(x2)2,y(x2)2的图象(1)请比较这三个函数图象有什么共同特征?(2)顶点和对称轴有什么关系?(3)图象之间的位置能否通过适当的变换得到?(4)由此,你发现了什么?三、探究二次函数yax2和ya(xh)2图象之间的关系1结合学生所画图象,引导学生观察y(x2)2与yx2的图象位置关系,直观得出yx2的图象y(x2)2的图象教师可以采取以下措施:借助几何画板演示几个对应点的位置关系,如:(0,0)(2,0);(2,2)(0,2);(2,2)(4,2)也可以把这些对应点在图象上用彩色粉笔标出,并用带箭头的线段表示平移过程2用同样的方法得出yx2的图象y(x
3、2)2的图象3请你总结二次函数ya(xh)2的图象和性质yax2(a0)的图象ya(xh)2的图象函数ya(xh)2的图象的顶点坐标是(h,0),对称轴是直线xh.4做一做(1)抛物线开口方向对称轴顶点坐标y2(x3)2y3(x1)2y4(x3)2(2)填空:抛物线y2x2向_平移_个单位可得到y2(x1)2;函数y5(x4)2的图象可以由抛物线_向_平移_个单位而得到四、探究二次函数ya(xh)2k和yax2图象之间的关系1在上面的平面直角坐标系中画出二次函数y(x2)23的图象首先引导学生观察比较y(x2)2与y(x2)23的图象关系,直观得出:y(x2)2的图象y(x2)23的图象(结合
4、多媒体演示)再引导学生观察刚才得到的yx2的图象与y(x2)2的图象之间的位置关系,由此得出:只要把抛物线yx2先向左平移2个单位,在向上平移3个单位,就可得到函数y(x2)23的图象2做一做:请填写下表:函数解析式图象的对称轴图象的顶点坐标yx2y(x2)2y(x2)233.总结ya(xh)2k的图象和yax2图象的关系yax2(a0)的图象ya(xh)2的图象ya(xh)2k的图象ya(xh)2k的图象的对称轴是直线xh,顶点坐标是(h,k)口诀:(h,k)正负左右上下移(h左加右减,k上加下减)从二次函数ya(xh)2k的图象可以看出:如果a0,当xh时,y随x的增大而减小,当xh时,y随x的增大而增大;如果a0,当xh时,y随x的增大而增大,当xh时,y随x的增大而减小4练习:课本第37页练习五、课堂小结1函数ya(xh)2k的图象和函数yax2图象之间的关系2函数ya(xh)2k的图象在开口方向、顶点坐标和对称轴等方面的性质六、作业布置教材第41页第5题