ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:59KB ,
资源ID:7416196      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7416196.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(秋七年级数学上册 1.2 数轴、相反数和绝对值教学设计 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

秋七年级数学上册 1.2 数轴、相反数和绝对值教学设计 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc

1、1.2数轴、相反数和绝对值第1课时数轴教学目标【知识与技能】使学生知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示.【过程与方法】在探索数轴画法的过程中,鼓励学生类比、猜想,初步理解数与形的结合.【情感、态度与价值观】向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想.教学重难点【重点】初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.【难点】正确理解有理数与数轴上点的对应关系.教学过程一、复习导入师:在上课之前老师先提几个问题,看大家学得怎样.1.有理数包括哪些数?0是正数还是负数?2.

2、温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直尺、弹簧秤等)?教学中,在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.演示从温度计抽象成数轴,激发学生学习的兴趣,使学生受到把实际问题抽象成数学问题的训练,同时把类比的思想方法贯穿于概念的形成过程.二、讲授新课1.师:请同学们阅读课本第7页,思考并讨论:(1)25用正数表示;0用数表示;零下10用负数表示.(2)数轴要具备哪三个要素?(3)原点表示什么数?原点右方表示什么数?原点左方表示什么数?(4)表示+2的点在什么位置?表示-3的点在什么位置?(5)原点向右0.5个单位长度的A点表示什么数?原点向左1个

3、单位长度的B点表示什么数?2.数轴的画法.师生共同总结数轴的画法步骤:第一步:画一条直线(通常是水平的直线),在这条直线上任取一点O,叫做原点,用这点表示数0(相当于温度计上的0);第二步:规定这条直线的一个方向为正方向(一般取从左到右的方向,用箭头表示出来).相反的方向就是负方向(相当于温度计0以上为正,0以下为负);第三步:适当地选取一条线段的长度作为单位长度,也就是在0的右面取一点表示1,0与1之间的长就是单位长度(相当于温度计上1占1小格的单位长度).在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示1,2,3,从原点向左,每隔一个单位长度取一点,它们依次表示-1,-2,-3,

4、.3.数轴的定义.规定了原点、正方向和单位长度的直线叫做数轴.原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的选择、单位长度大小的确定,都是根据需要人为规定的,此外,直线也不一定是水平的.动态演示各种类型的数轴,认识并掌握判断一条直线是不是数轴的依据.三、例题讲解师:同学们,下面我们一起来做几个例题.【例1】判断下图中所画的数轴是否正确;如不正确,指出错在哪里.分析原点、正方向、单位长度,数轴的这三要素缺一不可.【答案】都不正确,(1)缺少单位长度;(2)缺少正方向;(3)缺少原点;(4)单位长度不一致.【例2】说出下图所示的数轴上A、B、C、D各点表示的数.【答案】点C在原点表

5、示0,点A在原点左边与原点距离2个单位长度,故表示-2.同理,点B表示-3.5.点D在原点右边与原点距离2个单位长度,故表示2.【例3】把下面各小题的数分别表示在三条数轴上:(1)2,-1,0,-3,+3.5;(2)-5,0,+5,15,20;(3)-1 500,-500,0,500,1 000.【答案】略.四、课堂小结教师引导学生小结:1.数轴是非常重要的数学工具,它使数和直线上的点建立了一一对应的关系,它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但并不是数轴上的所有点都表示有理数.2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,注意不要漏画正方向、不

6、要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确.第2课时相反数教学目标【知识与技能】1.使学生了解互为相反数的几何意义.2.会求一个已知数的相反数;会对含有多重符号的数进行化简.【过程与方法】培养学生的观察、归纳与概括的能力,渗透数形结合思想.【情感、态度与价值观】通过由具体实例抽象概括的独立思考与合作学习的过程,培养学生积极参与、善于与他人合作交流的学习习惯.教学重难点【重点】理解相反数的代数定义与几何定义,熟练地求出一个已知数的相反数.【难点】多重符号的数的化简问题的理解.教学过程一、复习导入师:同学们,在上课之前,老师先出几个题目考考大家.1.在数轴上分别找出表示

7、下列各数的点:6与-6,-3与3,-1.5与1.5.想一想:在数轴上,表示每对数的点有什么相同?有什么不同?2.观察数6与-6,-3与3,-1.5与1.5有何特点.观察每组数所对应的两个点的位置关系有什么规律.学生归纳:每组中的每个数只有符号不同,它们所对应的两点分别在原点的两侧,到原点的距离相等.二、讲授新课师:下面我们一起来学习新课.1.发现并总结相反数的定义.只有符号不同的两个数称互为相反数.理解:代数定义:只有符号不同的两个数互为相反数.0的相反数是0.几何定义:在数轴上原点两旁,与原点的距离相等的两个点所表示的两个数互为相反数.0的相反数是0.说明:“互为相反数”的含义是相反数是成对

8、出现的,因而不能说“-6是相反数”.“0的相反数是0”是相反数定义的一部分.这是因为0既不是正数,也不是负数,它到原点的距离就是0,0是唯一的相反数仍等于它本身的数.三、例题讲解教师出示例题.【例1】判断下列说法是否正确:(1)-5是5的相反数.()(2)5是-5的相反数.()(3)5与-5互为相反数.()(4)-5是相反数.()【答案】(1)(2)(3)(4)【例2】(1)分别写出5、-7、-3、+11.2的相反数;(2)指出-2.4是什么数的相反数.【答案】(1)5的相反数是-5.-7的相反数是7.-3的相反数是3.+11.2的相反数是-11.2.我们通常在一个数的前面添上“-”号,表示这

9、个数的相反数.例如-(-4)=4,-(+5.5)=-5.5;同样,在一个数前面添上“+”号,表示这个数本身.例如+(-4)=-4,+(+12)=12.(2)-2.4是2.4的相反数.【例3】化简下列各数:(1)-(+10);(2)+(-0.15);(3)+(+3); (4)-(-20).【答案】(1)-(+10)=-10;(2)+(-0.15)=-0.15;(3)+(+3)=+3=3;(4)-(-20)=20.四、巩固练习课本P10练习的第13题.【答案】1.5,-1,3,2.6,-1.2,0.9,-.2.(1)2.8-3.2(2)4-7(3)-893.C五、课堂小结1.只有符号不同的两个数互

10、为相反数,其中一个是另一个的相反数,0的相反数是0,从数轴上看,求一个数的相反数就是找一个点关于原点的对称点.2.相反数是表示具有特定关系(只有符号不同)的两个数,单独一个数不能被称为相反数,相反数是成对出现的.3.正号“+”的功能是对一个数的符号予以确认;而负号“-”的功能是对一个数的符号予以改变.第3课时绝对值教学目标【知识与技能】1.使学生初步理解绝对值的概念.2.明确绝对值的代数定义和几何意义,会求一个已知数的绝对值,会在已知一个数的绝对值的条件下求这个数.【过程与方法】培养学生用数形结合思想解决问题的能力,渗透分类讨论的数学思想.【情感、态度与价值观】通过由具体实例抽象概括的独立思考

11、和合作学习的过程,培养学生积极主动的学习习惯.教学重难点【重点】让学生掌握求一个已知数的绝对值的方法及正确理解绝对值的概念.【难点】对绝对值的几何意义和代数定义的导出与对“负数的绝对值是它的相反数”的理解.教学过程一、复习导入师:同学们,我们先来做几个题目来复习一下上节课所学的知识.1.在数轴上分别标出-5,3.5,0及它们的相反数所对应的点.2.在数轴上找出与原点距离等于6的点.3.相反数是怎样定义的?引导学生从代数与几何两方面的特点出发回答相反数的定义.从几何方面可以说在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数;从代数方面说只有符号不同的两个数互为相反数.那么互为相

12、反数的两个数有什么相同的特征呢?由此引入新课,归纳出绝对值的定义.二、讲授新课师:下面我们一起来学习新课.1.发现、总结绝对值的定义.我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.例如,在数轴上表示数-6与表示数6的点与原点的距离都是6,所以-6和6的绝对值都是6,记作|-6|=|6|=6.同样可知|-4|=4,|+1.7|=1.7.2.试一试:你能从中发现什么规律?由绝对值的意义,我们可以知道:(1)|+2|=,=;(2)|0|=;(3)|-3|=,|-0.2|=.师引导学生概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点,在

13、原点左边的点表示的数(负数)的绝对值又有什么特点.由学生分类讨论,归纳出数a的绝对值的一般规律:(1)一个正数的绝对值是它本身;(2)0的绝对值是0;(3)一个负数的绝对值是它的相反数.即若a0,则|a|=a;若a0,则|a|=-a;若a=0,则|a|=0.3.绝对值的非负性.由绝对值的定义可知:不论有理数a取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a|0.三、例题讲解【例1】求下列各数的绝对值:-7,+,-4.75,10.5.【答案】=7;=;|-4.75|=4.75;|10.5|=10.5【例2】计算:(1)|0.32|+|0.3|;(2)|-4.2|-|4.

14、2|;(3)|-|-(-).分析求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到.在(3)中要注意区分绝对值符号与括号的不同含义.【答案】(1)0.62;(2)0;(3).四、巩固练习课本P11P12练习的第15题.【答案】1.略2.3,1.5,0,5,0.02,1003.(1)17(2)1(3)0(4)64.D5.8,8,五、课堂小结教师引导学生小结:1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一个数a的绝对值就是数轴上表示数a的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.求一个数的绝对值时注意先判断这个数是正数还是负数.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服