ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:335KB ,
资源ID:7415971      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7415971.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(七年级数学下册 9.2 多边形的内角和与外角和教案 (新版)华东师大版-(新版)华东师大版初中七年级下册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

七年级数学下册 9.2 多边形的内角和与外角和教案 (新版)华东师大版-(新版)华东师大版初中七年级下册数学教案.doc

1、多边形的内角和与外角和 教学目的 1.使学生了解多边形及多边形的内角、外角等概念。 2.使学生通过不同方法探索多边形的内角和与外角和公式,并会利用它们进行有关计算。 重点、难点 1.重点:多边形的内角和与外角和定理。 2.难点:多边形的内角和,外角和定理的推导。 教学过程 一、复习提问 1.什么叫三角形? 2.三角形的内角和是多少? 3.什么叫三角形的外角?什么叫外角和?三角形的外角和是多少? 二、新授 1.多边形的概念, 三角形有三个内角、三条边,我们也可以把三角形称为三边形(但习惯称三角形)。我们知道:不在同一直线上的三条线段首尾顺次连结组成的平面图形叫三角形。

2、 你能说出什么叫四边形、五边形吗? 如图(1)它是由不在同一直线上的4条线段首尾顺次连结组成的平面图形,记为四边形ABCD。(按顺时针或逆时针方向书写) 图(2)是由不在同一直线上的5条线段首尾顾次连结组成的平面图形,记为五边形ABCDE。 一般地,由n条不在同一直线上的线段首尾顺次连结组成的平面图形,记为n边形,又称多边形。 与三角形类似如图,∠A、∠D、∠C、∠ABC是四边形ABCD的四个内角,延长 AB、CB得四边形ABCD的两个外角∠CBE和∠ABF,这两个外角是对顶角。一个n边形有n个内角,有2n个外角。 如果多边形的各边都相等,各内角也都相等,则称为正多边形,如正三

3、角形、正四边形(正方形)、正五边形等等。连结多边形不相邻的两个顶点的线段叫做多边形的对角线,如图1,线段AC是四边形 ABCD的对角线,如图2,线段AD、AC是四边形ABCDE的对角线,如图3中线段AC、AD、AE是六边形ABCDEF的对角线。 问:(1)四边形有几条对角线?(两条AC、BD) (2)五边形有几条对角线? 以A为端点的对角线有两条AC、AD,同样以月为端点的对角线也有2条,以C为端点也有2条,但AC与CA是同一条线段,以D为端点的两条DA、DB与AD、BD都分别表示同一条线段。所以只有5条。 (3)六边形有几条对角线?n边形呢? 六边形有9条对角线。 从以上分析可

4、知从n边形的一个顶点引对角线,可以引(n-3)条, (除本身这个点以及和这点相邻的两点外),那么n个顶点,就有n(n- 3)条,但其中每一条都重复计算一次,如AB与BA,所以n边形一共有条对角线。 大家可以加以验证:当n=3时,没有对角线,当n=4时,有2条;当n=5时,有5条:当n=6时,有9条… 2.多边形的内角和公式。 三角形是边数最少的多边形,它的内角和等于180°,那么一般n边形是否也有内角和公式呢?让我们先从四边形,正边形,六边形……开始。 从上面对角线的研究可知,一条对角线把四边形分成2个三角形,这两个三角形的内角和的和就是四边形的内角和,五边形的内角和就是图中3个三角表

5、内角和的和。 让学生填写教科书表9.2.1由此,你可以得到”边形的内角和公式吗? n边形的内角和=(n-2)·180°知道一个多边形的内角和,根据公式也可以求边数n。 例1.求八边形的内角和。 解:(n-2)×180° =(8-2)×180° =1 080° 例2.一个多边形的内角和等于2160°,求它的边数。 问题:一个正多边形的一个内角为150°,你知道它是几边形?分析:正多边形的每个内角都相等。 多边形的内角和等于(n-2)·180°,还可以用以下的划分来说明,即在n边形内任取一点P,连结点P与多边形的每个顶点,可得几个三角形?这几个三角形的各内角与这个多边的各内角之

6、间有什么关系?请你试一试。 对有困难的学生教师可以加以引导。 如图(教科书图9.2.5)每一个三角形都有一条边就是多边形的边,因此n边形就可划分成n个三角形,这n个三角形的内角和减去以 P为顶点的周角所得的差就是”边形的内角和。因此,n边形的内角和为: n·180°-360°=n·180°-2·180°=(n-2)·180° 问:还有其他方法吗?让学生自主探索,对不同方法给予鼓励。 3.多边形的外角和。 什么叫多边形的外角和。 与三角形的外角和一样,与多边形的每个内角相邻的外角有两个,这两个角是对顶角,从与每个内角相邻的两个外角中分别取一个相加, 得到的和称为多边形的外角和,如

7、教科书图9.2.6,∠1+∠2+∠3+∠4就是四边形的外角和。 多边形的外角和是否也可以用公式表示呢?下面我们也来探讨。 因为n边形的一个内角与它的相邻的外角互为补角,所以可先求出多边形的内角与外角的总和,再减去内角和,就可得到外角和。 让学生填写填教科写表9.2.2 n边形的内角与外角的总和为n·180° n边形的内角和为(n-2)·180° 那么n边形的外角和为n·180°-(n-2)·180°=n·180°-n·180°+360°=360° 这就是说多边形的9L角和与边数无关,都等于360°。 例3.一个多边形的每个外角都是72°,这个多边形是几边形? 解  n·72°

8、360° 解得 n=5 因此,这个多边形是五边形 例4.一个多边形的内角和等于它外角和的5倍,这个多边形是几边形? 解  (n-2)·180°=5×360° 解得 n=12 因此,这个多边形是十二边形 三、巩固练习 教科书练习题。 四、小结 本节课我们通过把多边形划分成若干个三角形,用三角形内角和去求多边形的内角和,从而得到多边形的内角和公式为(n-2)·180°。这种化未知为已知的转化方法,必须在学习中逐步掌握。由于多边形的外角和等于360°,与边数无关,所以常把多边形内角的问题转化为外角和来处理。 五、作业 教科书习题9.2 1、2、3。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服