ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:687KB ,
资源ID:7414172      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7414172.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(七年级数学下册 2.1正数和负数-教案2 华东师大版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

七年级数学下册 2.1正数和负数-教案2 华东师大版.doc

1、第二章 有理数在上面的天气预报电视屏幕上,我们看到,这一天上海的最低温度是-5,读作负5,表示零下5。这里,出现了一种新数负数. 我们将会看到,除了表示温度以外,还有许多量需要用负数来表示.有了负数,数的家族引进了新的成员,将变得更加绚丽多彩,更加便于应用.本章将与你一起认识负数,把数的范围扩充到有理数,并研究有理数的大小比较和运算.2.1 正数和负数我们知道,为了表示物体的个数或事物的顺序,产生了数1,2,3,.; 为了表示“没有”,引入了数0;有时分配、测量的结果不是整数,需要用分数(小数)表示. 总之,数是为了满足生产和生活的需要而产生发展起来的.1. 相反意义的量在日常生活中,常会遇到

2、这样的一些量:例1 汽车向东行驶3公里和向西行驶2公里;例2 温度是零上10和零下5;例3 收入500元和支出237元; 例4 水位升高5.5米和下降3.6米等等.这里出现的每一对量,虽然有着不同的具体内容,但有着一个共同特点,它们都是具有相反意义的量,向东和向西、零上和零下;收入和支出;升高和下降都具有相反的意义.这些例子中出现的每一对量,有什么共同特点?你能再举出几个日常生活中的具有相反意义的量吗?2. 正数与负数对于相反意义的量, 只用原来的那些数很难区分量的相反意义. 例如,零上5用5表示, 那么零下5就不能仍用同一个数5来表示.想一想怎样表示具有相反意义的量呢?能否从天气预报的电视屏

3、幕上出现的标记中,得到一些启发呢?在天气预报的电视屏幕上我们发现,零下5可以用-5来表示. 一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示,把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“-”(读作负)号来表示.就拿温度为例,通常规定零上为正,于是零下为负,零上10就用10表示,零下5用 -5来表示.在例1中,如果规定向东为正,那么向西为负.汽车向东行驶3公里记作3公里,向西2公里应记作-2公里.在例3中,如果规定收入为正,收入500元记作500元,支出237元应记作什么?在例4中,如果升高5.5米记作5.5米,下降3.6米记作什么?在

4、这些讨论中,出现了哪些新数?为了表示具有相反意义的量, 我们引进了象-5,-2,-237,-3.6这样的数, 这是一种新数,叫做负数(negative number). 过去学过的那些数(零除外),如10,3,500,5.5等,叫做正数(positive number). 正数前面有时也可放上一个+号, 如5可以写成+5, +5和5是一样的. 注意: 0既不是正数,也不是负数.练习1. 将你所举出的具有相反意义的量用正数或负数来表示. 2.在中国地形图上,在珠穆朗 玛峰和吐鲁番盆地处都标有表明它们的高度的数,如图所示.这个数通常称为海拔高度,它是相对于海平面来说的.请说出图中所示的数8848和

5、-155表示的实际意义。海平面的高度用什么数表示? 3.下列各数中,哪些是正数?哪些是负数?+6;-21;54;0;-3.14;0.001;-9994.“一个数,如果不是正数,必定就是负数.”这句话对不对?为什么?3. 有理数想一想引进了负数以后,我们学过的数有哪些?引进了负数以后,我们学过的数就有: 正整数,如1,2,3,.;零: 0;负整数, 如-1,-2,-3,.;正分数, 如, ,4.5(即);负分数, 如-,-0.3(即),.正整数、零和负整数统称整数(integers),正分数和负分数统称分数(fractions).整数和分数统称有理数(rational numbers).有如下分

6、类表:把一些数放在一起,就组成一个数的集合,简称数集(set of numbers).所有的有理数组成的 数集叫做有理数集.类似地,所有的整数组成的数集叫做整数集,所有的正数组成的数集叫做正数集,所有的负数组成的数集叫做负数集,如此等等.例5 把下列各数填入表示它所在的数集的圈子里: -18, , 3.1416, 0, 2001, , -0.142857, 95% 正整数 负整数 整数集 有理数集解 , 3.1416, -18, , 2001, 95% -0.142857 正整数 负整数18,0,2001, -18, , 3.1416, 0, 2001, , -0.142857, 95% 整数

7、集 有理数集练习1. 请说出两个正整数, 两个负整数, 两个正分数,两个负分数.它们都是有理数吗?2. 有理数集中有没有这样的数,它既不是正数,也不是负数? 如有,这样的数有几个?3. 下面两个圆圈分别表示正数集合和整数集合,请在这两个圆圈内填入六个数,其中有三个数既在正数集合内, 又在整数集合内.这三个数应填在哪里? 你能说出这两个圆圈的重叠部分表示什么数的集合吗?正数集 整数集习题2.11. 下列各数,哪些是整数,哪些是分数? 哪些是正数,哪些是负数?1, -0.10, ,-789, 325, 0,-20, 10.10, 1000.12.把下列各数填入表示它所在的数集的圈子里:, 0.61

8、8, -3.14, 260, -2001, , , -5%整数集 分数集负数集 有理数集3.下面的大括号表示一些数的集合,把第1、2两题中的各数填入相应的大括号里:正整数集: 负整数集: 正分数集: 负分数集: 4观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的三个数,你能说出第100个数、第2000个数、第2001个数是什么吗?(1)1,-1,1,-1,1,-1,1,-1, , , ,.;(2)1,-2,3,-4,5,-6,7,-8, , , ,.;(3)-1,-, , , ,.阅读材料中国人最早使用负数九章算术和我国古代的“正负术”九章算术是中国古典数学最重要的一部著作。这部

9、著作的成书年代,根据现在的考证,至迟在公元前一世纪,但其中的数学内容,有些也可以追溯到周代。九章算术采用问题集的形式,全书246个问题,分成方田、粟米、衰分、少广、商功、均输、赢不足、方程、勾股等九章,其中所包含的数学成就是十分丰富的。引进和使用负数是九章算术的一项突出的贡献。在九章算术的“方程术”中,当用遍乘直除算法消元时,可能出现减数大于被减数的情形,为此,就需要引进负数九章算术在方程章中提出了如下的“正负术”: “同名相除,异名相益,正无入负之,负无入正之。其异名相除,同名相益,正无入正之,负无入负之。”这实际上就是正负术的加减运算法则。“同名”、“异名”分别指同号、异号;“相益”、“相

10、除”分别指两数的绝对值相加、相减。前四句说的是正负数和零的减法法则,后四句说的是正负数和零的加法法则。用符号表示,设ab0,这八句话可以表示为: (a)(b)(ab);(a)(b)(ab);0aa;0(a)a;(a)(b)(ab),(b)(a)(ab);(a)(b)(ab);0aa;0(a)a。不难看出,所有这些是与我们所学的有理数加减法法则是完全一致的。九章算术以后,魏晋时期的数学家刘徽对负数的出现就作了很自然的解释:“两算得失相反,要令正负以名之”,并主张在筹算中用红筹代表正数,黑筹代表负数。在国外,负数的出现和使用要比我国迟好几百年,直到七世纪时印度数学家才开始使用负数。而在欧洲,直到十六世纪韦达的著作还拒绝使用负数。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服