ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:130KB ,
资源ID:7411296      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7411296.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(春八年级数学下册 第十八章 平行四边形 18.2 特殊的平行四边形 18.2.1 矩形 第1课时 矩形的性质教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

春八年级数学下册 第十八章 平行四边形 18.2 特殊的平行四边形 18.2.1 矩形 第1课时 矩形的性质教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.doc

1、182特殊的平行四边形182.1矩形第1课时矩形的性质1理解并掌握矩形的性质定理及推论;(重点)2会用矩形的性质定理及推论进行推导证明;(重点)3会综合运用矩形的性质定理、推论以及特殊三角形的性质进行证明与计算(难点)一、情境导入如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发现什么?可以发现,角的大小改变了,但不管如何,它仍然保持平行四边形的形状我们若改变平行四边形的内角,使其一个内角恰好为直角,就得到一种特殊的平行四边形,也就是我们早已熟悉的长方形,即矩形,如图所示二、合作探究探究点一:矩形的性质【类型一】 运用矩形的性质求线段或角 在矩形ABCD中,O是

2、BC的中点,AOD90,矩形ABCD的周长为24cm,则AB长为()A1cmB2cmC2.5cmD4cm解析:在矩形ABCD中,O是BC的中点,AOD90.根据矩形的性质得到ABOOCD,则OAOD,DAO45,所以BOABAO45,即BC2AB.由矩形ABCD的周长为24cm,得2AB4AB24cm,解得AB4cm.故选D.方法总结:解题时矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质【类型二】 运用矩形的性质解决有关面积问题 如图,矩形ABCD的对角线的交点为O,EF过点O且分别交AB,CD于点E,F,则图中阴影部分的面积是矩形ABCD的面积的(

3、)A. B. C. D.解析:在矩形ABCD中,ABCD,OBOD,ABOCDO.在BOE和DOF中,BOEDOF(ASA),SBOESDOF,S阴影SAOBS矩形ABCD.故选B.方法总结:运用矩形的性质,通过证明全等三角形进行转化,将求不规则图形的面积转化为求简单图形面积是解题的关键【类型三】 运用矩形的性质证明线段相等 如图,在矩形ABCD中,以顶点B为圆心、边BC长为半径作弧,交AD边于点E,连接BE,过C点作CFBE于F.求证:BFAE.解析:利用矩形的性质得出ADBC,A90,再利用全等三角形的判定得出BFCEAB,进而得出答案证明:在矩形ABCD中,ADBC,A90,AEBFBC

4、.CFBE,BFCA90.由作图可知,BCBE.在BFC和EAB中,BFCEAB(AAS),BFAE.方法总结:涉及与矩形性质有关的线段的证明,可运用题设条件结合三角形全等进行证明,一般是将两条线段转化到一对全等三角形中进行证明【类型四】 运用矩形的性质证明角相等 如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EFED,EFED.求证:AE平分BAD.解析:要证AE平分BAD,可转化为ABE为等腰直角三角形,得ABBE.又ABCD,再将它们分别转化为两全等三角形的两对应边,根据全等三角形的判定和矩形的性质,即可求证证明:四边形ABCD是矩形,BCBAD90,ABCD,BEFBFE9

5、0.EFED,BEFCED90.BFECED,BEFEDC.在EBF与DCE中,EBFDCE(ASA)BECD.BEAB,BAEBEA45,EAD45,BAEEAD,AE平分BAD.方法总结:矩形的问题可以转化到直角三角形或等腰三角形中去解决探究点二:直角三角形斜边上的中线的性质 如图,在ABC中,AD是高,E、F分别是AB、AC的中点(1)若AB10,AC8,求四边形AEDF的周长;(2)求证:EF垂直平分AD.解析:(1)根据“直角三角形斜边上的中线等于斜边的一半”可得DEAEAB,DFAFAC,再根据四边形的周长的公式计算即可得解;(2)根据“到线段两端点距离相等的点在线段的垂直平分线上

6、”证明即可(1)解:AD是ABC的高,E、F分别是AB、AC的中点,DEAEAB105,DFAFAC84,四边形AEDF的周长AEDEDFAF554418;(2)证明:DEAE,DFAF,E、F在线段AD的垂直平分线上,EF垂直平分AD.方法总结:当已知条件含有线段的中点、直角三角形的条件时,可联想直角三角形斜边上的中线的性质进行求解三、板书设计1矩形的性质矩形的四个角都是直角;矩形的对角线相等2直角三角形斜边上的中线的性质直角三角形斜边上的中线等于斜边的一半通过多媒体演示知识的探究过程,让学生在体验、实践的过程中有更直观地认识,扩大认知结构,发展能力,更好地理解平行四边形与矩形之间的从属关系和内在联系,使课堂教学真正落实到学生的发展上

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服