1、第一单元教 学目 标1、通过全等三角形的概念和识别方法的复习,让学生体会辨别、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。2、培养学生观察和理解能力,几何语言的叙述能力及运用全等知识解决实际问题的能力。3、在学生操作过程中,激发学生学习的兴趣,培养学生主动探索,敢于实践的精神,培养学生之间合作交流的习惯。重 点运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。难 点运用全等三角形知识来解决实际问题。教学过程(包括课程导入、新课解析、例题精讲、课堂练习、作业设计等)全等三角形复习课 回顾思考:1. 全等三角形的定义: .2全等三角形的性质: . 3一般三
2、角形全等的判别方法: . 直角三角形全等的判别方法: . 4三角形全等的条件思路:当两三角形已具备两角对应相等时,第三条件应找 .当两三角形已具备两边对应相等时,第三条件应找 .当两三角形已具备一角一边对应相等时,第三条件应找 .5找三角形全等的条件时经常见到的隐含条件有: .6三个角对应相等的两个三角形全等吗?两边和其中一边的对角对应相等的两个三角形全等吗?试举反例说明 推诚出新:一挖掘“隐含条件”判全等1如图,AB=CD,AC=BD,则ABCDCB吗?说说理由2如图(2),点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC若B=20,CD=5cm,则C= ,BE=
3、说说理由3如图(3),若OB=OD,A=C,若AB=3cm,则CD= 说说理由 友情提示: 二.添条件判全等1.如图,已知AD平分BAC,要使ABDACD,根据“SAS”需要添加条件 ;根据“ASA”需要添加条件 ;根据“AAS”需要添加条件 .2.已知AB/DE,且AB=DE,(1)请你只添加一个条件,使ABCDEF,你添加的条件是 .(2)添加条件后,试说明ABCDEF.友情提示: 三熟练转化“间接条件”判全等4.如图,AE=CF,AFD=CEB,DF=BE,AFD与 CEB全等吗?为什么?5.如图,CAE=BAD,B=D,AC=AE,ABC与ADE全等吗?为什么?6.“三月三,放风筝”如
4、图是小东同学自己做的风筝,他根据AB=AD,BC=DC,不用度量,就知道ABC=ADC请用所学的知识给予说明四图形转化识全等请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从平移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?1平行线型:两个三角形有一条或两条对应边平行2相交线型:两个三角形上存在公共边或角3旋转型:两个三角形的一个对应角旋转若干角度后重合五变式训练:1.如图,ACBD,CABDBA,试说明:BCAD变式1:如图,ACBD,BCAD,试说明:CABDBA变式2:如图,AC=BD,C=D试说明:(1)AO=BO(2)CO=DO(3)BC=AD巩固练习:1.如图,点E,F在BC上,BE=CF,AB=DC,B=C. 说明:A=D2.如图,已知AB=AD, B=D,1=2,说明:BC=DE板 书设 计教学后记或反思(主要记录课堂设计理念,实际教学效果及改进设想等)1. 达标情况:基本掌握。2. 作三角形的(ASA), (AAS),(SAS)三种情况容易混淆,应加强训练。3. 加强学生画图能力的训练。