ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:164.50KB ,
资源ID:7410560      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7410560.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(秋九年级数学上册 第21章 二次函数与反比例函数 21.4 二次函数的应用 第3课时 二次函数的综合应用教案2 (新版)沪科版-(新版)沪科版初中九年级上册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

秋九年级数学上册 第21章 二次函数与反比例函数 21.4 二次函数的应用 第3课时 二次函数的综合应用教案2 (新版)沪科版-(新版)沪科版初中九年级上册数学教案.doc

1、21.4教学目标【知识与技能】能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(或小)值,培养学生解决问题的能力.【过程与方法】应用已有的知识,经过自主探索和合作交流尝试解决问题.【情感、态度与价值观】在经历和体验数学知识发现的过程中,提高思维品质,在勇于创新的过程中树立学好数学的自信心.重点难点【重点】二次函数在最优化问题中的应用.【难点】从现实问题中建立二次函数模型,学生较难理解和掌握.教学过程一、问题引入在日常生活、生产和科研中,常常会遇到求什么条件下可使面积最大、利润最大、材料最省、时间最少、效率最高等问题,这类问题称为最优化问题.其中一些问题可以

2、归结为求二次函数的最大值或最小值.如何利用二次函数分析解决这样的问题呢?本节课我们来研究二次函数在实际问题中的应用.做一做:从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是:h=30t-5t2(0t6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?我们可以借助函数图象解决这个问题,画出函数h=30t-5t2(0t6)的图象,如图所示,可以看出这个函数的图象是一条抛物线的一部分.这条抛物线的顶点是这个函数图象的最高点,也就是说,当t取顶点的横坐标时,这个函数有最大值.因此,当t=-=-=3时,h有最大值=45,也就是说,小球运动的

3、时间是3s时,小球最高,小球运动中的最大高度是45 m.一般地,当a0(或a0)时,抛物线y=ax2+bx+c的顶点是最低(或高)点,也就是说,当x=-时,二次函数y=ax2+bx+c有最小(或大)值.二、新课教授问题1.用总长为60 m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地面积S最大?师生活动:学生积极思考,找到等量关系式,并尝试解答.教师巡视、指导,最后给出解答过程.解:矩形场地的周长是60 m,一边长l,则另一边长为(-l),场地的面积S=l(30-l),即S=-l2+30l(0l30).因此,当l=-=-=15(m)时,S有最大值=225(m2).

4、即当l是15 m时,场地面积S最大,最大值是225 m2.问题2.某商品现在的售价是每件60元,每星期可卖出300件,市场调查反映,如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?师生活动:教师分析存在的问题,书写解答过程.分析:调整价格包括涨价和降价两种情况.我们先来看涨价的情况.设每件涨价x元,则每星期售出商品的利润y随之改变.我们先来确定y随x变化的函数关系式,涨价x元时,每星期少卖10x件,实际卖出(300-10x)元.销售额为(60+x)(300-10x)元,买进商品需付40(300-10x)元.因此

5、,所得利润为y=(60+x)(300-10x)-40(300-10x),(0x30)即y=-10x2+100x+600=-10(x2-10x)+600=-10(x2-10x+25)+850=-10(x-5)2+850(0x30)所在,在涨价的情况下,涨价5元,即定价65元时,利润最大,最大为850元.思考:在降价的情况下,最大利润是多少?(降价2.5元,即定价57.5元时,利润最大,最大为6 125元.)思考:由上面的讨论及现在的销售情况,你知道如何定价才能使利润最大了吗?(在涨价的情况下,定价65元;在降价的情况下,定价57.5元.)问题3:图中是抛物线形拱桥,当水面在l时,拱顶离水面2 m

6、,水面宽4 m.若水面下降1 m,水面宽度增加多少?师生活动:学生完成解答.教师分析存在的问题,书写解答过程.分析:我们知道二次函数的图象是抛物线,建立适当的坐标系,就可以求出这条抛物线表示的二次函数.为解题简便,以抛物线的对称轴为y轴建立直角坐标系.可设这条抛物线表示的二次函数为y=ax2.由抛物线经过点(2,-2),可得-2=a22,解得a=-,这条抛物线表示的二次函数为y=-x2.水面下降1 m,水面所在位置的纵坐标为y=-3,代入上述表达式得x=.故水面下降1 m,水面宽度增加(2-4)m.让学生回顾解题过程,讨论、交流、归纳解题步骤:(1)先分析问题中的数量关系,列出函数关系式;(2

7、)研究自变量的取值范围;(3)研究所得的函数;(4)检验x的取值是否是自变量的取值范围内,并求相关的值;(5)解决提出的实际问题.学生尝试从前面四道题中找到解题规律.教师补充学生回答中的不足,及时纠正.三、巩固练习1.已知二次函数y=(3+x)(1-2x),当x=时,函数有最值,为.【答案】-大2.二次函数y=x2-8x+c的最小值为0,那么c的值等于()A.4B.8C.-4D.16【答案】D3.沿墙用长32 m的竹篱笆围成一个矩形的护栏(三面),怎样围才能使矩形护栏面积最大?最大面积为多少?试画出所得函数的图象.【答案】围成的矩形一边长为8 m、另一边长为16 m可使矩形护栏的面积最大,最大

8、面积为128 m2.图象略.(注意自变量的取值范围)4.某旅社有客房120间,每间客房的日租金为50元,每天都客满,旅社装修后要提高租金,经市场调查,如果一间客房的日租金增加5元,则客房每天出租会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前的日租金总收入增加多少元?【答案】将每间客房的日租金提高到75元时,总收入最高,比装修前的日租金总收入增加750元.5.某产品每件的成本价是120元,试销阶段,每件产品的销售价x (元)与产品的日销售量y(台)之间的函数关系如下表所示:x(元)130150165y(台)705035并且日销售量y是每件售价x

9、的一次函数.(1)求y与x之间的函数关系式;(2)为获得最大利润,每件产品的销售价应定为多少元?此时每日销售的利润是多少?【答案】(1)y=-x+200(2)销售利润S=(-x+200)(x-120),当售价定为每件160元时,每日销售利润最大为1 600元.四、课堂小结1.得出用二次函数知识解决实际生活中的最值问题的一般步骤:(1)列出二次函数的表达式,并根据自变量的实际意义确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值.2.解题循环图:教学反思本节课充分运用导学提纲,教师提前通过一系列问题的设置引导学生课前预习.在课堂上通过对一系列问题的

10、解决与交流,让学生通过二次函数掌握解决面积最大、利润最大等这一类题的方法,学会用建模的思想去解决和函数有关的应用问题.所以在例题的处理中适当地降低了难度,让学生的思维有一个拓展的空间.在训练的过程中,通过学生的独立思考与小组合作探究相结合,使学生的分析能力、表达能力及思维能力都得到训练和提高.同时也注重对解题方法与解题模式的归纳与总结,并适当地渗透转化、化归、数形结合等数学思想方法.就整节课看,学生的积极性得以充分调动,特别是学困生,在独立思考和小组合作中改变以往的配角地位,也能积极参与到课堂学习活动中.今后继续发扬从学生出发,从学生的需要出发,把问题的难度降低,让学生在能力范围内掌握新知识,等有了足够的热身运动之后再去拓展延伸.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服