ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:1.86MB ,
资源ID:7405790      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7405790.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(七年级数学下:9.8中心对称图形教案鲁教版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

七年级数学下:9.8中心对称图形教案鲁教版.doc

1、9.8 中心对称图形 初中数学课的教学应结合具体的数学内容采用“问题情境——建立模型——解释、应用与拓展”的模式展开,让学生经历了知识的形成与应用的过程,从而更好地理解数学知识的意义,掌握必要的基础知识与基本技能,增强学好数学的愿望和信心。特别对于抽象的概念教学,要关注概念的实际背景与形成过程,帮助学生克服记忆概念的学习方式。现以《中心对称图形》为例,阐述如何“创设问题情境、建立知识模型”的过程。 一、教学目标: 1.经历观察、发现、探究中心对称图形的有关概念和基本性质的过程,积累一定的审美体验。 2.了解中心对称图形及其基本性质,掌握平行四边形也是中心对称图形。 二、教学重、难点:

2、 理解中心对称图形的概念及其基本性质。 三、教学过程: (一)创设问题情境 1.以魔术创设问题情境:教师通过扑克牌魔术的演示引出研究课题,激发学生探索“中心对称图形”的兴趣。 【魔术设计】:师取出若干张非中心对称的扑克牌和一张是中心对称的牌,按牌面的多数指向整理好(如上图),然后请一位同学上台任意抽出一张扑克,把这张牌旋转180O 后再插入,再请这位同学洗几下,展开扑克牌,马上确定这位同学抽出的扑克。 (课堂反应:学生非常安静,目不转睛地盯着老师做动作。每完成一个动作之后,学生就进入沉思状态,接着就是小声议论。) 师重复以上活动2次后提问: (1)你们知道这是什么原因吗?老

3、师手中的扑克牌图案有什么特点? (2)你能说明为什么老师要把抽出的这张牌旋转180O 吗?(小组讨论) (反思:创设问题情境主要在于下面几点理由:(1)采取从学生最熟悉的实际问题情境入手的方式,贴近学生的生活实际,让学生认识到数学来源于生活,又服务于生活,进一步感悟到把实际问题抽象成数学问题的训练,从而激发学生的求知欲。(2)所有新知识的学习都以对相关具体问题情境的探索作为开始,它们是学生了解与学习这些新知识的有效方法,同时也活跃了课堂气氛,激发学生的学习兴趣。(3)通过扑克魔术创设问题情境,学生获得的答案将是丰富的。在最后交流归纳时,他们感觉到,自己在活动中“研究”的成果,对最终形成规范

4、正确的结论是有贡献的,从而激发他们更加注意学习方式和“研究”方式。这也是对他们从事科学研究的情感态度的培养。学生勤于动手、乐于探究,发展学生实践应用能力和创新精神成为可行。) 2.教师揭示谜底。 利用“Z+Z”课件游戏演示牌面,请学生找一找哪张牌旋转180O 后和原来牌面一样。 3.学生通过动手分析上述扑克牌牌面、独立思考、探究、合作交流等活动,得到答案: (1)只有一张扑克牌图案颠倒后和原来牌面一样。 (2)其余扑克牌颠倒后和原来牌面不一样,因此,老师事先按牌面的多数(少数)指向整理好,把任意抽出的一张扑克牌旋转180O 后,就可以马上在一堆扑克牌中找出它。 (反思:本环节是在

5、扑克魔术揭密问题的具体背景下,通过学生自己的观察、发现、总结、归纳,进一步理解中心对称图形及其特点,发展空间观念,突出了数学课堂教学中的探索性。从而培养了学生观察、概括能力,让学生尝到了成功的喜悦,激发了学生的发现思维的火花。) (二)学生分组讨论、思考探究: 1.师问:生活中有哪些图形是与这张扑克牌一样,旋转180O后和原来一样? 生举例:线段、平行四边形、矩形、菱形、正方形、圆、飞机的双叶螺旋桨等。 2.你能将下列各图分别绕其上的一点旋转180O,使旋转前后的图形完全重合吗?(先让学生思考,允许有困难的学生利用 “Z+Z”演示其旋转过程。) 3.有人用“中心对称图形”一词描述

6、上面的这些现象,你认为这个词是什么含义? (对于抽象的概念教学,要关注概念的实际背景与形成过程,加强数学与生活的联系,力求让学生采取发现式的学习方式,通过“想一想”、“议一议”、 “动一动”等多种活动形式,帮助学生克服记忆概念的学习方式。) (三)教师明晰,建立模型 1.给出“中心对称图形”定义:在平面内,一个图形绕某个点旋转180O,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。 2.对比轴对称图形与中心对称图形:(列出表格,加深印象) 轴对称图形 中心对称图形 有一条对称轴——直线 有一个对称中心——点 沿对称轴对折 绕对称中心旋转1

7、80O 对折后与原图形重合 旋转后与原图形重合 3.以下五家银行行标中,既是中心对称图形又是轴对称图形的有( ) (四)解释、应用与拓广 1.教师用“Z+Z智能教育平台”演示旋转过程,验证上述图形的中心对称性,引导学生讨论、探究中心对称图形的性质。 (利用计算机《Z+Z智能教育平台》技术,通过图形旋转给出中心对称图形的一个几何解释,目的是使学生对中心对称图形有一个更直观的认识。) 2.探究中心对称图形的性质 板书:中心对称图形上的每一对对应点所连成的线段都被对称中心平分。 3.师问:怎样找出一个中心对称图形的对称中心? (两组对应点连

8、结所成线段的交点) 4.平行四边形是中心对称图形吗?若是,请找出其对称中心,你怎样验证呢? 学生分组讨论交流并回答。 讨论:根据以上的验证方法,你能验证平行四边形的哪些性质? 5.逆向问题:如果一个四边形是中心对称图形,那么这个四边形一定是平行四边形吗? 学生讨论回答。 6.你还能找出哪些多边形是中心对称图形? (反思:合作学习是新课程改革中追求的一种学习方法,但合作学习必须建立在学生的独立探索的基础上,否则合作学习将会流于形式,不能起到应有的效果,所于我在上课时强调学生先独立思考,再由当天的小组长组织进行,并由当天的记录员记录小组成员的活动情况(每个小组有一张课堂合作学习参考表

9、见附录)。) (五)拓展与延伸 1.中国文字丰富多彩、含义深刻,有许多是中心对称的,你能找出几个吗? 2.正六边形的对称中心怎样确定? (六)魔术表演: 1.师:把4张扑克牌放在桌上,然后把某一张扑克牌旋转180º后,得到右图,你知道哪一张扑克被旋转过吗? 2.学生小组活动: 以“引入”为例,在一副扑克牌中,拿出若干张扑克牌设计魔术,相互之间做游戏。 (新教材的编写,着重突出了用数学活动呈现教学内容,而不是以例题和习题的形式出现。通过多种形式的实践活动,让学生亲历探究与现实生活联系密切的学习过程,使学生在合作中学习,在竞争收获,共同分享成功的喜悦,同时

10、能调节课堂的气氛,培养学生之间的情感。只有这样,学生的创新意识和动手意识才会充分地发挥出来。) 四、案例小结 《数学课程标准》提出:“实践活动是培养学生进行主动探索与合作交流的重要途径。”“教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性。”这两段话,正体现了新教材的重要变化——关注学生的生活世界,学习内容更加贴近实际,同时强调了数学教学让学生动手实践的重要意义和作用。 现实性的生活内容,能够赋予数学足够的活力和灵性。对许多学生来说,“扑克”和“游戏”是很感兴趣的内容,因此,也具有现实性,

11、即回归生活(玩扑克牌)——让学生感知学习数学可以让生活增添许多乐趣,同时也让学生感知到数学就在我们身边,学生学习的数学应当是生活中的数学,是学生“自己身边的数学”。这样,数学来源于生活,又必须回归于生活,学生就能在游戏中学得轻松愉快,整个课堂显得生动活泼。 附录: 第 组 小组课堂合作学习参考表 组长 发言人 记录员 操作员 优 良 中 差 小组自评 组员的参与状况 所有的学生都积极参与小组活动,为小组活动献计献策 3/4的学生积极参与小组活动,为小组活动献计献策 一半的学生参与小组活动

12、为小组活动献计献策 仅有1、2个人参与小组活动,活动时有时无 合作策略的技能 任务被平均分配给组内诸成员,不同的见解能妥善处理 任务被小组的大部分成员分担,不同的见解能处理 任务仅被小组中的1/2成员分担,不同的见解基本能处理 任务仅由组中一人承担,不同见解吵闹不休 交互的 质量 小组成员显示出了极好的倾听能力和领导能力,成员通过讨论的方式共享他人的观点和想法 小组成员显示出了娴熟的交互能力,能够围绕中心任务进行生动的讨论 小组成员显示出一定的交互能力,能认真的倾听他人的观点,显示出一定的讨论和选择能力 小组成员间很少进行交互,仅进行简短的会谈,部

13、分学生对交互不感兴趣 小组活动的秩序 服从领导,勤于思考,不随便打断别人发言,说话声音轻 勤于思考,偶尔打断别人发言,说话声音较轻 勤于思考,经常打断别人发言,说话声音重 不服从组长领导,大声喧哗,乱哄哄处于无序状态 组员学习效果 优势互补,积极探究,出色完成任务 优势互补,虚心学习,基本完成任务 优势互补,虚心学习,完成任务1/2 两极分化,未完成任务 小组成员的角色扮演 每个成员都有自己明确的角色,有效的行使自己的角色 每个成员都被分配特定的角色,但角色不明确或没有坚持行使自己的角色 小组成员被分配了一定的角色,但是没有坚持行使自己的角色 小组成员并没有进行角色分配或1人统揽所有任务 活动结果的汇报水平 敢于发言、质疑,发言声音宏亮,思路清晰、简练,突出重点 敢于发言、质疑,发言声音宏亮,思路清晰,基本能突出重点 能主动发言,发言声音一般,思路清晰 没有疑问,发言声音一般,语无伦次,不能突出重点

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服