ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:79.50KB ,
资源ID:7404119      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7404119.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(九年级数学“圆周角”教学设计 新人教版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级数学“圆周角”教学设计 新人教版.doc

1、“圆周角”教学设计教学任务分析教学目标知识技能1了解圆周角与圆心角的关系掌握圆周角的性质和直径所对圆周角的特征能运用圆周角的性质解决问题数学思考通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力通过观察图形,提高学生的识图能力通过引导学生添加合理的辅助线,培养学生的创造力解决问题在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想,转化的数学思想解决问题情感态度引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.重点圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征难点发现并论证圆周角

2、定理教学流程安排活动流程图活动内容和目的活动1创设情景,提出问题活动2探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系活动3 发现并证明圆周角定理活动4 圆周角定理应用活动小结,布置作业从实例提出问题,给出圆周角的定义通过实例观察、发现圆周角的特点,利用度量工具,探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系探索圆心与圆周角的位置关系,利用分类讨论的数学思想证明圆周角定理反馈练习,加深对圆周角定理的理解和应用回顾梳理,从知识和能力方面总结本节课所学到的东西教学过程设计问题与情境师生行为设计意图活动1 问题演示课件或图片(教科书图24.1-11):(1)如图:同学甲

3、站在圆心的位置,同学乙站在正对着玻璃窗的靠墙的位置,他们的视角(和)有什么关系? (2)如果同学丙、丁分别站在其他靠墙的位置和,他们的视角(和)和同学乙的视角相同吗?教师演示课件或图片:展示一个圆柱形的海洋馆.教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗观看窗内的海洋动物教师出示海洋馆的横截面示意图,提出问题 教师结合示意图,给出圆周角的定义利用几何画板演示,让学生辨析圆周角,并引导学生将问题、问题中的实际问题转化成数学问题:即研究同弧()所对的圆心角()与圆周角()、同弧所对的圆周角(、等)之间的大小关系教师引导学生进行探究. 本次活动中,教师应当重点关注:(1)问题的提出是否引

4、起了学生的兴趣;(2)学生是否理解了示意图;(3)学生是否理解了圆周角的定义(4)学生是否清楚了要研究的数学问题从生活中的实际问题入手,使学生认识到数学总是与现实问题密不可分,人们的需要产生了数学将实际问题数学化,让学生从一些简单的实例中,不断体会从现实世界中寻找数学模型、建立数学关系的方法引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.活动2问题 (1)同弧(弧AB)所对的圆心角AOB与圆周角ACB的大小关系是怎样的? (2)同弧(弧AB)所对的圆周角ACB与圆周角ADB的大小关系是怎样的?教师提出问题,引导学生利用度量

5、工具(量角器或几何画板)动手实验,进行度量,发现结论由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半教师再利用几何画板从动态的角度进行演示,验证学生的发现教师可从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的关系有无变化:(1)拖动圆周角的顶点使其在圆周上运动;(2)改变圆心角的度数;改变圆的半径大小本次活动中,教师应当重点关注:(1)学生是否积极参与活动;(2)学生是否度量准确,观察、发现的结论是否正确活动的设计是为 引导学生发现让学生亲自动手,利用度量工具(如半圆仪、几何画板)进行实验、探究,得出结论

6、激发学生的求知欲望,调动学生学习的积极性教师利用几何画板从动态的角度进行演示,目的是用运动变化的观点来研究问题,从运动变化的过程中寻找不变的关系活动问题(1)在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况?(2)当圆心在圆周角的一边上时,如何证明活动中所发现的结论?(3)另外两种情况如何证明,可否转化成第一种情况呢?教师引导学生,采取小组合作的学习方式,前后四人一组,分组讨论教师巡视,请学生回答问题回答不全面时,请其他同学给予补充教师演示圆心与圆周角的三种位置关系本次活动中,教师应当重点关注:(1)学生是否会与人合作,并能与他人交流思维的过程和结果(2)学生能否发现圆心与圆周角的三

7、种位置关系学生是否积极参与活动.教师引导学生从特殊情况入手证明所发现的结论学生写出已知、求证,完成证明学生采取小组合作的学习方式进行探索发现,教师观察指导小组活动启发并引导学生,通过添加辅助线,将问题进行转化教师讲评学生的证明,板书圆周角定理本次活动中,教师应当重点关注:(1)学生是否会想到添加辅助线,将另外两种情况进行转化(2)学生添加辅助线的合理性(3)学生是否会利用问题的结论进行证明数学教学是在教师的引导下,进行的再创造、再发现的教学通过数学活动,教给学生一种科学研究的方法学会发现问题,提出问题,分析问题,并能解决问题活动的安排是让学生对所发现的结论进行证明培养学生严谨的治学态度问题的设

8、计是让学生通过合作探索,学会运用分类讨论的数学思想研究问题培养学生思维的深刻性问题、的提出是让学生学会一种分析问题、解决问题的方式方法:从特殊到一般学会运用化归思想将问题转化并启发培养学生创造性的解决问题活动问题(1)半圆(或直径)所对的圆周角是多少度?(2)90的圆周角所对的弦是什么?(3)在半径不等的圆中,相等的两个圆周角所对的弧相等吗?(4)在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么? (5)如图,点、在同一个圆上,四边形的对角线把个内角分成个角,这些角中哪些是相等的角?(6)如图, O的直径AB 为10cm,弦AC 为cm, ACB的平分线交O于D, 求BC、A

9、D、BD的长.学生独立思考,回答问题,教师讲评 对于问题(1),教师应重点关注学生是否能由半圆(或直径)所对的圆心角的度数得出圆周角的度数对于问题(2),教师应重点关注学生是否能由90的圆周角推出同弧所对的圆心角的度数是180,从而得出所对的弦是直径对于问题(3),教师应重点关注学生能否得出正确的结论,并能说明理由教师提醒学生:在使用圆周角定理时一定要注意定理的条件对于问题(4),教师应重点关注学生能否利用定理得出与圆周角对同弧的圆心角相等,再由圆心角相等得到它们所对的弧相等 对于问题(5),教师应重点关注学生是否准确找出同弧上所对的圆周角对于问题(6),教师应重点关注(1)学生是否能由已知条

10、件得出直角三角形ABC、ABD;(2)学生能否将要求的线段放到三角形里求解(3)学生能否利用问题4的结论得出弧AD与弧BD相等,进而推出AD=BD活动的设计是圆周角定理的应用通过4个问题层层深入,考察学生对定理的理解和应用问题、是定理的推论,也是定理在特殊条件下得出的结论问题的设计目的是通过举反例,让学生明确定理使用的条件问题是定理的引申,将本节课的内容与所学过的知识紧密的结合起来,使学生很好地进行知识的迁移问题、是定理的应用即时反馈有助于记忆,让学生在练习中加深对本节知识的理解教师通过学生练习,及时发现问题,评价教学效果活动5 小结通过本节课的学习你有哪些收获?布置作业(1)阅读作业:阅读教科书P9093的内容(2)教科书94 习题24.1第2、题教师带领学生从知识、方法、数学思想等方面小结本节课所学内容教师关注不同层次的学生对所学内容的理解和掌握教师布置作业 通过小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感增加阅读作业目的是让学生养成看书的习惯,并通过看书加深对所学内容的理解课后巩固作业是对课堂所学知识的检验,是让学生巩固、提高、发展

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服