1、7.2.2二元一次方程组的解法-加减法(1) 教学目的 1使学生进一步理解解方程组的消元思想。 2使学生了解加减法是消元法的又一种基本方法,并使他们会用加减法解一些简单的二元一次方程组。 重点、难点 1,重点:用加减法解二元一次方程组。 2难点:两个方程相减消元时对被减的方程各项符号要做变号处理。 教学过程 一、复习 1解二元一次方程组的基本思想是什么? 2用代人法解方程组 3x+5y=5 3x-4y=23 学生口述解题过程,教师板书。 二、新授 对复习2的反思并引入新课。 用代入法解二元一次方程的基本思想是消元,只有消去一个未知数,才能把二元转化为熟悉的一元方程求解,为了消元,除了代入法还有
2、其他的方法吗?(让学生主动探求解法,适当时教师可作以下引导) 观察方程组在这个方程组中,未知数x的系数有什么特点?怎样才能把这个未知数消去?你的根据是什么? 这两个方程中未知数x的系数相同,都是3,只要把这两个方程的左边与左边相减、右边与右边相减,就能消去x从而把它转化为一元一次方程。把方程两边分别减去方程的两边,相当于把方程的两边分别减去两个相等的整式。 为了避免符号上的错误 (3x+5y)-(3x-4y)=5-23 板书示范时可以如下: 3x+5y-3x+4y=-18 解:把得 9y18 y=2把y2代入,得 3x+5(2)=5解得 x=5 x5 这结果与用代入法解的结果一样 y=2 也可
3、以通过检验从上面的解答过程中,你发现了二元一次方程组的新解法吗?让学生自己概括一下。例2.解方程组 3x+7y=9 4x-7y=5 怎样解这个方程组呢?用什么方法消去一个未知数?先消哪个未知数比较方便? 以上两个例子是通过将两个方程相加(或相减),消去一个未知数,将 方程组转化为一元一次方程来解,这种解法叫加减消元法,简称加减法。 三、巩固练习教科书第31页,练习1、2。 四、小结 今天我们又学习了解二元一次方程组的另一种方法加减法,它是通过把两个方程两边相加(或相减)消去一个未知数,把二元一次方程组转化为一元一次方程。请同学们归纳一下,什么样的方程组用“代入法”,什么样的方程组用“加减法”。