ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:39.50KB ,
资源ID:7403832      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7403832.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(九年级数学 二次函数所描述的关系-北师大版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级数学 二次函数所描述的关系-北师大版.doc

1、九年级数学 二次函数所描述的关系-北师大版 教学目标 (一)教学知识点 1.探索并归纳二次函数的定义. 2.能够表示简单变量之间的二次函数关系. (二)能力训练要求 1.经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系. 2.让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系. 3.能够利用尝试求值的方法解决实际问题. (三)情感与价值观要求 1.从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲. 2.把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历

2、史发展的作用. 3.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养大家的合作意识. 教学重点 1.经历探索和表示二次函数关系的过程.获得用二次函数表示变量之间关系的体验. 2.能够表示简单变量之间的二次函数关系. 教学难点 经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验. 教学方法 讨论探索法. 教具准备 投影片二张 第一张:(记作§2.1A) 第二张:(记作§2.1B) 教学过程 Ⅰ.创设问题情境,引入新课 [师]对于“函数”这个词我们并不陌生,大家还记得我们学过哪些函数吗? [生]学过正比例函数,一次函数

3、反比例函数. [师]那函数的定义是什么,大家还记得吗? [生]记得,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量. [师]能把学过的函数回忆一下吗? [生]可以. 一次函数y=kx+b.(其中k、b是常数,且k≠0) 正比例函数y=kx(k是不为0的常数). 反比例函数y=(k是不为0的常数). [师]很好.从上面的几种函数来看,每一种函数都有一般的形式.那么二次函数的一般形式究竟是什么呢?本节课我们将揭开它神秘的面纱. Ⅱ.新课讲解 一、由实际问题探索二次函数关系 投影片:(§2.1A

4、) 某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子. (1)问题中有哪些变量?其中哪些是自变量?哪些是因变量? (2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子? (3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式. [师]请大家互相交流后回答. [生](1)变量有树的数量,每棵树上平均结的橙子数,所有的树上共结的橙子数.其中树的数量是自变量,每棵树上平均结的橙子数以及所有的树上共

5、结的橙子数是因变量. (2)假设果园增种x棵橙子树,那么果园共有(x+100)棵树,平均每棵树就会少结5x个橙子,则平均每棵树结(600-5x)个橙子. (3)如果果园橙子的总产量为y个,则 y=(x+100)(600-5x)=-5x2+100x+60000. [师]大家根据刚才的分析,判断一下上式中的y是否是x的函数?若是函数,与原来学过的函数相同吗? [生]因为x是自变量,y是因变量,给x一个值,相应地就确定了一个y的值,因此根据函数的定义,y是x的函数. 但是从函数形式上看,它不同于正比例函数,一次函数与反比例函数,自变量的最高次数是2,所以我猜测可能是二次函数. 二、想一

6、想 在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多? [师]请大家发表自己的看法. [生甲]在函数y=-5x2+100+60000中,因为一次项系数100大于二次项系数-5,因此当x越大时,y的值越大. [生乙]我不同意他的观点.因为x2的增长速度比x的增长速度要快,因此-5x2的绝对值要大于100x的绝对值,因此x应取比较小的数才能使y的值大. [师]大家说的都有道理,究竟是如何呢?我们不妨取一些特殊的数字验证一下. 我们可以列表表示橙子的总产量随橙子树的增加而变化的情况.你能根据表格中的数据作出猜测吗?自己试一试. X(棵) 1 2 3 4 5 6 7

7、 8 9 10 11 12 13 14 Y(个) 请大家先填表,再猜测. [生]从左到右依次填60095,60180,60255,60320,60375,60420,60455,60480,60495,60500,60495,60480,60455,60420. 可以猜测当x逐渐增大时,y也逐渐增大.当x取10时,y取最大值.x大于10时,y的值反而减小,因此当增种10棵橙子树时,橙子的总产量最多. [师]大家的猜想很有道理,推理能力日渐增长,究竟猜想结果如何,我们将要在后面的学习中专门进行研究. 三、做一做

8、投影片:(§2.1B) 银行的储蓄利率是随时间的变化而变化的,也就是说,利率是一个变量.在我国,利率的调整是由中国人民银行根据国民经济发展的情况而决定的. 设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存.如果存款额是100元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税). [师]首先我们要回顾一下有关名词,本金,利息,本息和,如何计算利息,在前面的学习中我们已接触过,大家还记得吗? [生]记得. 本金是存入银行时的资金,利息是银行根据利率和存的时间付给的“报酬”,本息和就是本金和利息的和.利息=本金×利率×期数(时间). [师]根

9、据利息的公式,大家可以计算出一年后的本息和. [生]一年后的本息和为(100+100x·1)=100(1+x). [师]再计算出两年后的本息和,这时,一年后的本息和将作为第二年的本金. [生]y=100(1+x)+100(1+x)x×1 =10O(1+x)+100(1+x)x =100(1+x)(1+x) =100(1+x)2=100x2+200x+100. [师]在这个关系式中,y是x的函数吗?是x的什么函数?请猜想. [生]因为年利率x是一个变量,两年后的本息和y是随着x的变化而变化的,因此x是自变量,y是x的函数,再从函数的形式来看,y是x的二次函数. 四、二次函数的定

10、义 [师]从我们刚才推导出的式子y=-5x2+100x+60000和y=100x2+200x+100中,大家能否根据式子的形式,猜想出二次函数的定义及一般形式呢? [生]一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数叫做x的二次函数(quadratic function). [师]很好.上面说的只是一般形式,并不是每个二次函数关系式必须如此.有时没有一次项,有时没有常数项,有时这两项都不存在,只要有二次项存在即为二次函数.如正方形面积A与边长a的关系A=a2,圆面积S和半径r的关系 S=πr2也都是二次函数的例子. Ⅲ.课堂练习 随堂练习(P36) Ⅳ.课时小

11、结 本节课我们学习了如下内容: 1.经历探索和表示二次函数关系的过程.猜想并归纳二次函数的定义及一般形式. 2.利用尝试求值的方法解决种多少棵橙子树,可以使果园橙子的总产量最多. Ⅴ.课后作业 习题2.1 Ⅵ.活动与探究 若y=(m2+m)是二次函数,求m的值. 分析:根据二次函数的定义,只要满足m2+m≠0,且m2-m=2, y=(m2+m)就是二次函数. 解:由题意得 解,得 ∴m=2. 故若y=(m2+m)是二次函数,则m的值等于2. 板书设计 §2.1 二次函数所描述的关系 二、1.由实际问题探索二次函数关系(投影片§2.1A) 2.想一想 3.做一做(投影片§2.1B) 4.二次函数的定义 二、课堂练习 随堂练习 三、课时小结 四、课后作业

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服