ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:555.50KB ,
资源ID:7403310      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7403310.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(七年级数学下第十章10.2立方根(2根时)教案新人教版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

七年级数学下第十章10.2立方根(2根时)教案新人教版.doc

1、10.2 立方根(1课时) 课程目标 一、知识与技能目标 1.了解立方根的概念,能够用根号表示一个数的立方根. 2.能用类比平方根的方法学习立方根,及开立方运算,并区分立方根与平方根的不同. 二、过程与方法目标 用类比的方法探寻出立方根的运算及表示方法,并能自我总结出平方根与立方根的异同. 三、情感态度与价值观目标 发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理. 教材解读 由正方体的边长与体积的关系引出立方运算,转入立方根运算.于是发现立方根运算与立方运算互为逆运算,很容易联想到平方运算与平方根运算之间的关系,于是立方根的表示,运算等问题就留给同学去发现. 学情分析

2、 在学习完平方根运算后继而学习立方根运算,通过列举一些有代表意义的数求立方运算可发现立方根比平方根更容易掌握. 一、创设情境,导入新课 劳动节即将来临,学生们纷纷给他们敬爱的老师奉献他们的心意,刘老师所任教的两个班的科代表一同前往老师办公室,他们手中捧着两个形状、大小一模一样的礼盒,并对老师说:“我代表我班的同学向老师敬礼,并以此小礼物代表我们对老师的敬意”.说完,两个科代表相视一笑,请老师猜一猜里面装的东西是否一样,里面物体的体积是否一样.老师知道,他们葫芦里肯定又要卖什么药了,就郑重其事地说出两个盒子的大小形状虽然一样,但里面所装的物体的形状肯定不一样,并且它们的体积也相同,但一定有其它不

3、相同的地方. 刘老师打开纸盒一看,发现里面装的果然是两个不同形状的水晶一样的透明饰物,一个是圆球形的,一个是正方形,并且盒子里面各有一张纸条内容相同,经过测算,其体积为125cm2.同学们,你们知道这两个饰物除了形状不同以外还有什么不同吗?那就是球的半径与正方体的边长,你能求出这个半径和边长吗?要求出这两个量,我们就来学习开方中的另一种运算:开立方运算. 二、师生互动,课堂探究 (一)提出问题,引发讨论 在学习平方根的运算时,首先是找出一些数的平方值,然后才根据其逆运算过程确定某数的平方根,同样,我们先来算一算一些数的立方.23=_ ;(-2)3=_; 0.53=_;(-0.5)3=_;()3

4、=_;-()3=_ ; 03=_. (1)经计算发现正数,0,负数的立方值与平方值有何不同之处? 23=8;(-2)3=-8; 0.53=0.125; (-0.5)3=-0.125;()3=; -()3=-; 03=0. 我们发现,求立方运算时,当底数互为相反数时,其立方值也是一对互为相反数,这与平方运算不同,平方运算的底数为相反数,但其平方值相等,故一个正数的平方根有两个值,但一个正数的立方根却只有一个值了,什么是立方值呢? 类似平方值定义可知,若x3=a则x为a的立方根,记为,读作三次根号a.负数没有平方根,负数有无立方根呢?从(-2)3=-8,(-0.5)3=-0.125,()3=-,可

5、知负数有立方根,并且其立方根仍为负数. (2)开平方与平方运算互为逆运算,同样开立方与立方运算也互逆,故请根据上述等式,写出这些互为相反数的立方根. 8的立方根为2,-8的立方根为-2,记为=2, =-2 0.125的立方根为0.5,-0.125的立方根为-0.5,记为=0.5, =-0.5 的立方根为,-的立方根为-,记为=,=- 0的立方根为0,记为=0 上述过程都是求一个数的立方根的运算,把求一个数的立方根的运算,叫做开立方,开立方与立方运算互为逆运算.故正方体的体积为125时,其边长为=5,而球的体积为r3 =125时,r3.1. (二)导入知识,解释疑难 1.例题求解 既然正数的立方

6、是正数,负数的立方是负数,那么正数的立方根为正数,负数的立方根为负数,同样0的立方是0,则0的立方根是0,可记为=a(a为任意数),或者若a3=M,则有=a,其中M为被开方数,3为根指数,且根指数为3时,不能省略,只有当根指数为2时,才能省略不写.故课本P170探究中, =-2,- =-2,由此得=- ,又=-3,- =-3,由此得=-于是可归纳出其规律: =-,而,的意义不同,其值也不同,若a0时, -表示a的算术平方根的相反数无意义;若a0,则-无意义. 例2:求下列各数的立方根。 -27; ; -0.216。 解:(-3)3=-27,=-3; ()3=, =,. (-0.6)3=-0.2

7、16, =-=-0.6. 练习:(1)求下列各数的立方根: 0 8 -64 81- 解:=0; =2; =-4; 81-=81-6=75; 4.22; (2)比较-4、-5、-的大小. 解:43=64,53=125,64100125, 4-5 2.探究活动 若正方体的棱长为1,则其体积为1;若正方体的棱长为2,则其体积为8;若正方体的棱长为4,则其体积为64;若其棱长为8,则其体积为512当棱长为2n时,其体积为多少?某正方体的体积为1时,其棱长为1;体积为2时,棱长为;体积为3时,棱长为 ;若体积扩大到原来的n倍,则棱长扩大多少倍? 解:正方体棱长为1,则体积为1,棱长为2,体积为8,比较两

8、者棱长扩大了2倍,体积扩大了8倍,棱长又扩大了1倍,其体积相应增大7倍,为原来的8倍,故当棱长为2n时,体积为8n3. 当体积扩大到原来的n倍时,棱长扩大到原来的倍. (三)归纳总结,知识回顾 这节课学习了立方根的概念,立方根的表示方法以及如何求一个数的立方根.用计算器求任意数的立方根时,只能先求出该数的绝对值的立方根,再根据任意数的正负性决定其值,注意区分平方根与立方根. 练习:(一)171页1,3,4; 172页1,3 1.某数的立方根等于它本身,这个数是多少? 2.求下列各数的立方根:(1)-1+; (2)640003.某金属冶炼厂将27个大小相同的立方体钢铁在炉火中熔化后浇铸成一个长方

9、体钢铁,此长方体的长,宽,高分别为160cm,80cm和40cm,求原来立方体钢铁的边长.4.有一边长为6cm的正方体的容器中盛满水,将这些水倒入另一正方体容器时,还需再加水127cm3才满,求另一正方体容器的棱长. 参考答案 1.这个数为0,1 2.(1)- (2)40 3. cm 4.7cm 作业:172页2,5。 10.2 立方根(2课时)答:被开方数扩大(缩小)1000倍时,它的立方根扩大(缩小)10倍。课堂练习:1。 171页2, 173页10,112.观察下列各式是否成立,你能从中找到什么结论,并证明你的结论. (1) =2 (2) =3 (3) =4 (4) =5 3.设1995x3=1996y3=1997z3,xyz0,且=+,求的值.参考答案 2.7=8-1=23-1 26=27-1=33-1 63=64-1=43-1 124=125-1=53-1 猜测=n(n=1,2,3,) =n3.令1995x3=1996y3=1997z3=k,k0,则1995=,1996=,1997=,故=+, 即 =. 而x0,y0,z0,所以=()3,解得: =1.作业:183页5,172页4

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服