ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:326KB ,
资源ID:7402843      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7402843.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(七年级数学上册 第二章 整式的加减本章复习教案 (新版)新人教版-(新版)新人教版初中七年级上册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

七年级数学上册 第二章 整式的加减本章复习教案 (新版)新人教版-(新版)新人教版初中七年级上册数学教案.doc

1、本章复习【知识与技能】1.使学生对本章内容的认识更全面、更系统化.2.进一步加深学生对本章基础知识的理解以及基本技能(主要是计算)的掌握.【过程与方法】通过总结、计算训练,培养学生的观察、分析、归纳、总结以及概括能力.【情感态度】认识到数学是解决实际问题和进行交流的重要工具.【教学重点】本章基础知识的归纳、总结;基础知识的运用;整式的加减运算.【教学难点】本章基础知识的归纳、总结;基础知识的运用.一、知识框图,整体把握二、释疑解惑,加深理解1.学习单项式应注意的问题:(1)单项式的系数包括它前面的符号;(2)单项式的系数是1或1时,通常1省略不写,如k,pq2等,单项式的系数是带分数时,通常写

2、成假分数;(3)单项式的次数仅仅与字母有关,是单项式中所有字母指数的和,特别地,单个字母的次数是1.常数的次数是0.而7102ab2c的次数是4,与102无关;(4)要正确区分单项式的次数与单项式中字母的次数,如6p2q的次数是3,其中字母p的次数是2.例1 ab (填“是”或“不是”)单项式, (填“是”或“不是”)单项式.【分析】本题出现了两个极易被混淆的单项式,只是一个数的代号,易被误认为是一个字母,而分母中是非零数时,因为乘除的运算是统一的,实际表示的是乘法运算,这与单项式定义并不冲突.【答案】是 是例2 单项式4.3103ab2c是 次单项式.【分析】单项式的次数只与字母因数有关,1

3、03是数字因数的一部分,指数3不能参与指数和的计算.【答案】四2.学习多项式应注意几个问题:(1)多项式中,每个单项式叫做多项式的项,项包括它前面的符号;(2)多项式的次数不是所有项的次数之和,而是次数最高项的次数;(3)多项式没有系数概念,但对多项式中的每一项来说都有系数.例3 判断下列多项式是几次几项式.(1)3x+5y7;(2)a3ba2b2c+abc5c2+7.【分析】判断一个多项式是几次几项式时,首先要看哪一项的次数最高,则这一项的次数就是多项式的次数;再确定这个多项式所含不为同类项的项的个数,则就是几项式.【答案】(1)一次三项式 (2)五次五项式3.整式的加减运算是重点,准确求得

4、结果先得把握两个前提:(1)认准同类项,从“相同字母”和“同一字母次数相同”两方面考察;(2)谨慎处理去括号时符号的变与不变.三、典例精析,复习新知例1 找出下列代数式中的单项式、多项式和整式.此题由学生口答,并说明理由.通过此题,进一步加深学生对于单项式、多项式、整式的定义的理解.此题在学生回答过程中,及时强调“系数”及“次数”定义中应注意的问题:系数应包括前面的“+”号或“”号,次数是“指数之和”.例3 指出多项式a3a2bab2+b31是几次几项式,最高次项、常数项各是什么?解:是三次五项式,最高次项有:a3、a2b、ab2、b3,常数项是1.例4 化简:通过此题强调:(1)去括号(包括

5、去多重括号)的问题;(2)数字与多项式相乘时分配律的使用问题.例5 化简、求值:5ab23ab(4ab2+ab)5ab2,其中a=,b=.解:化简的结果是:3ab2,求值的结果是.例6 一个多项式加上2x3+4x2y+5y3后,得x3x2y+3y3,求这个多项式,并求当x=,y=时,这个多项式的值.解:此多项式为3x35x2y2y3;值为.例7 已知当x1时,代数式ax5+bx3+cx86,求当x1时,ax5+bx3+cx8的值.【分析】观察ax5+bx3+cx中x的指数均为奇数,当x1,x1时,它的值正好互为相反数,以整体代入的方法可达到求值的目的.解:当x1时,代数式ax5+bx3+cx8

6、6,a+b+c8=6,即a+b+c14. 当x1时,代数式的值为a(1)5+b(1)3+c(1)8abc8(a+b+c)8 把代入得原式14822,即当x1时,ax5+bx3+cx822.四、复习训练,巩固提高1.下列各组中,不是同类项的是( )2.把多项式5xy-3x3y2-5+x2y3按字母x的指数从大到小排列是 .3.小红和小兰房间窗户的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径分别相同).(1)窗户中能射进阳光的部分的面积分别是多少?(窗框面积忽略不计)(2)你能指出其中的单项式或多项式吗?它们的次数分别是多少?【教学说明】以上复习题供课堂训练之用,这些题都比较简单,

7、可让学生先独立完成,然后教师进行评讲.第35题可让学生上台板演.【答案】1.A2.-3x3y2+x2y3+5xy-53.(1)分别是ab- b2、ab-b2;(2)都是多项式,且次数都是2.五、师生互动,课堂小结通过本节课的复习,你还有哪些困惑和疑问?说说看.1.布置作业:从教材复习题2中选取.2.完成练习册中本课时的练习.1.本节课是全章的复习课.首先是复习本章的主要概念和法则.一上课,就进行课堂提问,“关于单项式,你都知道什么”,“关于多项式,你又知道什么”.通过学生的回答,充分地调动学生积极性,使学生主动参与到课堂中来.而且这样的问题具有一定的开放性,可使学生的思维发散,把他们所知道的有关内容都说出来.通过对一个问题的多个侧面地回答,可进一步加深学生对基础知识的理解与重视,又可培养他们主动分析问题的习惯.2.对于应该强调的问题,如果只是泛泛而谈,效果不大.因此,在复习了本章的主要知识后,指导学生练习,通过具体的题目,强调有关的问题,将给学生留下更深的印象,学习效果会更好.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服