ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:57.50KB ,
资源ID:7402313      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7402313.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(七年级数学下册 第3章 3.2 提多项式公因式(第2课时)教学设计 (新版)湘教版-(新版)湘教版初中七年级下册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

七年级数学下册 第3章 3.2 提多项式公因式(第2课时)教学设计 (新版)湘教版-(新版)湘教版初中七年级下册数学教案.doc

1、提公因式法 第2课时 提多项式公因式                   1.会确定多项式的公因式;(重点) 2.掌握提多项式公因式进行因式分解.(重点、难点) 一、情境导入 1.因式分解:2ax-4a2y. 2.在多项式2ax-4a2y中,如果把其中的a用(a+b)替换,则可得到多项式:2(a+b)x-4(a+b)2y,还可以进行因式分解吗?如果可以,怎样进行因式分解? 二、合作探究 探究点一:确定多项式公因式 【类型一】 直接确定公因式 把10a2(x+y)2-5a(x+y)3因式分解时,应提取的公因式是(  ) A.5a B.(x+y)2 C.5(x+y

2、)2 D.5a(x+y)2 解析:把(x+y)看作一个整体,系数10和5的最大公约数是5,相同字母分别是a和(x+y),其中a的最低次幂是1,(x+y)的最低次幂是2,所以这个多项式的公因式是5a(x+y)2,故选D. 方法总结:在确定多项式时,如果多项式中的各部分含有相同的多项式因式,可把这个多项式看作一个整体,然后按照确定单项式公因式的方法确定公因式.即:公因式的系数取各项系数的绝对值的最大公因数,公因式的字母及指数取各项都含有的相同字母的最低次幂. 变式训练:见《学练优》本课时练习“课堂达标训练”第1题 【类型二】 通过变形确定公因式 分解2x(-x+y)2-(x-y)3应

3、提取的公因式是(  ) A.-x+y B.x-y C.(x-y)2 D.以上都不对 解析:把(x-y)看作一个整体,(-x+y)2=(x-y)2,这样原多项式化为2x(x-y)2-(x-y)3,根据公因式的确定方法可知其公因式为(x-y)2.故选C. 方法总结:底数互为相反数时,可通过如下两个等式变形:(a-b)2n=(b-a)2n,(a-b)2n+1=-(b-a)2n+1(n为正整数).因此,确定公因式时,原多项式中的部分项的因式可适当变形,在变形时要特别注意符号. 变式训练:见《学练优》本课时练习“课堂达标训练”第2题 探究点二:提多项式公因式进行因式分解 【类型一】 提

4、公因式进行因式分解 把下列各式因式分解: (1)x(x-y)-y(x-y); (2)6(x+y)(x-y)-3(y-x)2. 解析:(1)公因式为(x-y),提取公因式后两个因式相同,注意写成乘方的形式; (2)由于(y-x)2=(x-y)2,所以多项式可化为6(x+y)(x-y)-3(x-y)2,确定公因式为3(x-y),提取公因式后再化简即可. 解:(1)x(x-y)-y(x-y)=(x-y)(x-y)=(x-y)2; (2)6(x+y)(x-y)-3(y-x)2=6(x+y)(x-y)-3(x-y)2=3(x-y)[2(x+y)-(x-y)]=3(x-y)(x+3y).

5、 方法总结:提取公因式后,每个因式中都要合并同类项,化为最简形式.一般情况下,最后结果中最多只能含有小括号,而不能含有中括号或大括号等. 变式训练:见《学练优》本课时练习“课堂达标训练”第6题 【类型二】 利用因式分解整体代换求值 已知2a+b=7,ab=4,求2a2b+ab2的值. 解析:原式提取公因式变形后,将2a+b与ab的值代入计算即可求出值. 解:∵2a+b=7,ab=4,∴原式=ab(2a+b)=4×7=28. 方法总结:求代数式的值,有时要将已知条件看作一个整体代入求值. 【类型三】 因式分解化简多项式后,求代数式的值 先因式分解,再求值: (2x+1)2(

6、3x-2)-(2x+1)(3x-2)2-x(2x+1)(2-3x),其中x=. 解析:式中除含有公因式(2x+1)外,将第3项中的(2-3x)改写成-(3x-2)后,还有公因式(3x-2),故可提公因式(2x+1)(3x-2). 解:原式=(2x+1)2(3x-2)-(2x+1)(3x-2)2+x(2x+1)(3x-2)=(2x+1)(3x-2)[(2x+1)-(3x-2)+x]=(2x+1)(3x-2)(2x+1-3x+2+x)=3(2x+1)(3x-2).当x=时,原式=3×(2×+1)×(3×-2)=3×4×=30. 方法总结:当题中含有幂的底数是多项式时,就要观察是否要把某些项中

7、的这类因式变形才能找出公因式;变形时则要注意根据幂的指数的奇偶性考虑其所在项是否要改变符号;在提取幂的底数是多项式这样的公因式时,要把底数的多项式看作一个整体. 变式训练:见《学练优》本课时练习“课后巩固提升”第10题 三、板书设计 1.提公因式时,如果多项式的首项符号为负,常提取一个带“-”号的公因式. 2.(a-b)2n=(b-a)2n,(a-b)2n+1=-(b-a)2n+1(n为正整数). 本节课通过提单项式公因式引导出提多项式公因式,学习时可类比提单项式公因式的方法进行.教学中注意底数是互为相反数时的多项式的变形,在式子前面是否要加上负号,并强调提取公因式后剩下的部分一定要化简,并注意不要混淆整式乘法与因式分解

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服