ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:85.50KB ,
资源ID:7400747      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7400747.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(七年级数学下册 11.3不等式的解集教案1 鲁教版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

七年级数学下册 11.3不等式的解集教案1 鲁教版.doc

1、11.3不等式的解集教学目标1使学生了解不等式的解集、解不等式的概念,会在数轴上表示出不等式的解集2知道不等式的“解集”与方程“解”的不同点 能力目标3通过教学,使学生能够正确地在数轴上表示出不等式的解集,并且能把数轴上的某部分数集用相应的不等式表示 情感目标4在本节课的教学过程中,渗透数形结合的思想,并使学生初步学会运用数形结合的观点去分析问题、解决问题 5通过讲解不等式的“解集”与方程“解”的关系,向学生渗透对立统一的辩证观点教学重点和难点重点:不等式的解集的概念及在数轴上表示不等式的解集的方法难点:不等式的解集的概念课堂教学过程设计一、从学生原有的认知结构提出问题1什么叫不等式?什么叫方

2、程?什么叫方程的解?(请学生举例说明)2用不等式表示:(1)x的3倍大于1; (2)y与5的差大于零;3当x取下列数值时,不等式x36是否成立?4,3.5,4,2.5,3,0,2.9(2、3两题用投影仪打在屏幕上)二、讲授新课1引导学生运用对比的方法,得出不等式的解的概念2不等式的解集及解不等式首先,向学生提出如下问题:不等式x36,除了上面提到的,4,2.5,0,2.9是它的解外,还有没有其它的解?若有,解的个数是多少?它们的分布是有什么规律?(启发学生利用试验的方法,结合数轴直观研究具体作法是,在数轴上将是x36的解的数值4,2.5,0,2.9用实心圆点画出,将不是x36的解的数值3.5,

3、4,3用空心圆圈画出,好像是“挖去了”一样如下图所示)然后,启发学生,通过观察这些点在数轴上的分布情况,可看出寻求不等式x36的解的关键值是“3”,用小于3的任何数替代x,不等式x36均成立;用大于或等于3的任何数替代x,不等式x36均不成立即能使不等式x36成立的未知数x的值是小于3的所有数,用不等式表示为x3把能够使不等式x36成立的所有x值的集合叫做不等式x36的解的集合简称不等式x36的解集,记作x3最后,请学生总结出不等式的解集及解不等式的概念(若学生总结有困难,教师可作适当的启发、补充)一般地说,一个含有未知数的不等式的所有解,组成这个不等式的解的集合简称为这个不等式的解集不等式一

4、般有无限多个解求不等式的解集的过程,叫做解不等式3启发学生如何在数轴上表示不等式的解集我们知道解不等式不能只求个别解,而应求它的解集一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x3那么如何在数轴上直观地表示不等式x36的解集x3呢?(先让学生想一想,然后请一名学生到黑板上试着用数轴表示一下,其余同学在下面自行完成,教师巡视,并针对黑板上板演的结果做讲解)在数轴上表示3的点的左边部分,表示解集x3如下图所示由于x=3不是不等式x36的解,所以其中表示3的点用空心圆圈标出来(表示挖去x=3这个点)记号“”读作大于或等于,既不小于;记号“”读作小于或等于,即不大于例如

5、不等式x53的解集是x2(想一想,为什么?并请一名学生回答)在数轴上表示如下图即用数轴上表示2的点和它的右边部分表示出来由于解中包含X=2,故其中表示2的点用实心圆点表示此处,教师应强调,这里特别要注意区别是用空心圆圈“”还是用实心圆点“”,是左边部分,还是右边部分三、应用举例,变式练习例1 在数轴上表示下列不等式的解集:(4)1x4; (5)2x3; (6)2x3解:(1),(2),(3)略(4)在数轴上表示1x4,如下图(5)在数轴上表示2x3,如下图(6)在数轴上表示2x3,如下图(此题在讲解时,教师要着重强调:注意所给题目中的解集是否包含分界点,是左边部分还是右边部分本题应分别让6名学

6、生板演,其余学生自行完成,教师巡视,遇到问题,及时纠正)例2 用不等式表示下列数量关系,再用数轴表示出来:(1)x小于1; (2)x不小于1;(3)a是正数; (4)b是非负数解:(1)x小于1表示为x1;(用数轴表示略)(2)x不小于1表示为x1;(用数轴表示略)(3)a是正数表示为a0;(用数轴表示略)(4)b是非负数表示为b0(用数轴表示略)(以上各小题分别请四名学生回答,教师板书,最后,请学生在笔记本上画数轴表示)例3 用不等式的解集表示出下列各数轴所表示的数的范围(投影,请学生口答,教师板演)解:(1)x2;(2)x1.5;(3)2x1(本题从另一侧面来揭示不等式的解集与数轴上表示数

7、的范围的一种对应关系,从而进一步加深学生对不等式解集的理解,以使学生进一步领会到数形结合的方法具有形象,直观,易于说明问题的优点)练习(1)用简明语言叙述下列不等式表示什么数:x0;x0;x1;x1(2)在数轴上表示下列不等式的解集:x3; x1; x1.5;*(4)观察不等式x40的解集是什么?用不等式和数轴分别表示出来.它的正数解是什么?自然数解是什么?(*表示选作题)四、师生共同小结针对本节课所学内容,请学生回答以下问题:1如何区别不等式的解,不等式的解集及解不等式这几个概念?2找出一元一次方程与不等式在“解”,“求解”等概念上的异同点3记号“”、“”各表示什么含义?4在数轴上表示不等式

8、解集时应注意什么?结合学生的回答,教师再强调指出,不等式的解、不等式的解集及解不等式这三者的定义是区别它们的唯一标准;在数轴上表示不等式解集时,需特别注意解的范围的分界点,以便在数轴上正确使用空心圆圈“”和实心圆点“”五、作业1不等式x36的解集是什么?2在数轴上表示下列不等式的解集:(1)x1; (2)x0; (3)1x5;3求不等式x25的正整数解课堂教学设计说明由于本节课的知识点比较多,因此,在设计教学过程时,紧紧抓住不等式的解集这一重点知识通过对方程的解的意义的回忆,对比学习不等式的解及解集同时,为了进一步加深学生对不等式的解集的理解,教学中注意运用以下几种教学方法:(1)启发学生用试验的方法,结合数轴直观形象来研究不等式的解和解集;(2)比较方程与不等式的解的异同点;(3)通过例题与练习,加深理解在数轴上表示数是数形结合的具体体现而在数轴上表示不等式的解集则又进了一步因此,在设计教学过程时,就充分考虑到应使学生通过本节课的学习,进一步领会数形结合的思想方法具有形象、直观、易于说明问题的优点,并初步学会用数形结合的观点去处理问题、解决问题

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服