ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:93KB ,
资源ID:7399978      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7399978.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(七年级数学上册 展开与折叠教案 北师大版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

七年级数学上册 展开与折叠教案 北师大版.doc

1、展开与折叠 教学设计教学设计思想本节是从学生生活周围熟悉的物体入手,使学生进一步认识立体图形与平面图形的关系:不仅要让学生了解多面体可由平面图形围成,而立体图形可按不同方式展开成平面图形,更重要的是让学生通过观察、思考和自己动手操作,经历和体验图形的变化过程,进一步发展学生的空间观念,养成研究性学习的良好习惯学生对展开与折叠的动手活动很感兴趣,因此在教学过程中要注重学生的动手实践,在实际的操作过程中去体验、探索及创新,以培养学生的动手能力及创新意识针对在探索过程中出现的问题让学生通过自主猜想,小组交流等,培养主动探索、勇于实践的科学精神,提高空间想像力和探索解决问题的能力教学目标知识与技能:1

2、明确立体图形与平面图形的关系,即一些立体图形可由平面图形围成,一些立体图形可展开成平面图形;2通过展开与折叠活动,知道棱柱、圆柱、圆锥的侧面展开图,认识棱柱的某些特性;3能根据展开图判断和制作简单的立体模型过程与方法:3经历展开与折叠、模型制作等活动,培养动手实践和解决问题能力及语言归纳能力,发展空间观念,积累数学活动经验情感态度价值观:4初步获得动手制作的乐趣及制作成功后的成就感;在制作实验的过程中感受生活中立体图形的美,增强美感教学重、难点 重点:1通过观察、比较及小组的讨论、合作, 根据展开图判断和制作简单的立体模型2发现并认识棱柱的一些特征难点:准确判断出可有效展开或折叠的图形并能合理

3、制作教学方法探究式鼓励学生进行想像,并动手操作进行尝试在操作过程中,启发学生思考,使学生操作与思考相结合课时安排:2课时教具学具教师准备:多媒体、六棱柱模型 学生课前准备:第一课时:绘图的基本工具、纸板、剪刀、粘胶第二课时:正方体、圆柱、圆锥、三棱柱、四棱柱,可供折叠的16开纸、剪刀、胶带第一课时:教学活动设计一、创设问题情境,引导学生观察 (多媒体显示)如图,一只蚂蚁在正方体箱子的一个顶点A,它发现相距它最远的另一个顶点B处有它感兴趣的食物,这只蚂蚁想尽快得到食物,哪条路径最短?试在图中将路线画出来师:同学们能不能帮小蚂蚁找到最短路径?生:学生兴趣很浓,想尽快知道答案,通过讨论,可得到很多方

4、法师:生活常识可知,两点之间线段最短若把这个正方体图形展开成平面图形,就不难发现答案日常生活中,要想包装一个正方体或圆柱形状的物体,需要根据它的平面展开图来裁剪,今天就来讨论几何体的展开与折叠引入课题:展开与折叠(一)二、学生动手、动口、动脑,探求新知1做一做电脑演示图1,先让学生猜测图1经过折叠是否能折成图2的棱柱,然后引导学生做如下活动学生分成小组,每人准备一张纸,按如下步骤制作棱柱:(1)在提前准备的纸上,按图1的尺寸画出一个同样形状的图形(2)沿实现部分剪下(3)沿虚线折纸,用胶带纸将接口粘合 师:检查学生操作中出现的情况,和学生交流剪法,并肯定学生操作中的成绩然后把各小组中制作的进行

5、作品展示让学生结合自己制作的棱柱思考并回答下列问题:(1)这个棱柱的上、下底面一样吗?它们各有几条边?(2)这个棱柱有几个侧面?侧面的形状是什么图形?(3)侧面的个数与底面图形的边数有什么关系?(4)这个棱柱有几条侧棱?它们的长度之间有什么关系?引导学生用自己说出棱,侧棱的概念,以及棱与面的特点强调:长方体和正方体都是四棱柱2练一练:(投影显示题目)(1)长方形有_个顶点,_条棱,_个面,这些面的形状都是_(2)哪些面的形状与大小一 定完全相同?(3)哪些棱的长度一定相等?3想一想(1)先让学生想一想,以培养学生空间想像能力,然后再折一折,让学生发现能折好或不能折好的规律,要进行归纳整理,发现

6、规律(2)引导学生观察六棱柱模型,回答下列问题(投影显示)一个六棱柱模型,它的底面边长都是5厘米,侧棱长4厘米,这个六棱柱一共有多少个面?它们分别是什么形状?哪些面的形状、大小完全相同?这个六棱柱一共有多少条棱?它们的长度分别是多少?(面是指侧面和底面,应加以强调)引导学生发现n棱柱有3n条棱,2n个顶点,(n2)个面4试一试下列图形各是哪种几何体的表面展开成平面的图形?先想一想,再折一折三、小结1通过本堂课的教学,你了解立体图形和平面图形的关系了吗?2一个立体图形的平面展开图是否惟一?四、作业习题13五、板书设计 12展开和折叠(一)棱柱棱,侧棱n棱柱有3n条棱,2n个顶点,(n2)个面第二

7、课时:教学活动设计一、提出问题,引入新课如果给出一个几何体,例如我们最熟知的正方体如果沿某些棱剪开,会得到什么样的平面图形?这样的平面图形有多少种呢?下面我们就来通过具体操作和思考来回答这个问题二、做一做师:将正方体展成一个平面图形,是指正方形的六个面展开后所成的六个正方形中的每一个至少有一条边与其他的正方形的某条边重合即相连下面我就将这些纸板做的正方体分发到每个组,以组为单位,按上面的要求将正方体的表面展成平面图形,并在全班展示你们的作品,用语言描述你是如何将一个正方体表面展成平面图形的提示首先,学生先进行想像,然后动手操作尝试在操作过程中应思考如下几个问题:1你是如何剪的?2下一步该如何办

8、?3这样剪行吗?学生分组按上面的方法来共同实践、探索交流教师可加入到学生思考、实践、探索、交流的过程中,从而发现学生思维的闪光点,并鼓励每个组的同学大胆将自己思考、探索的结果展示给大家生:我们都知道,正方体有6个面,12条棱,如果把它展成平面图形,6个正方形中的每一个正方形至少有一边与其他正方形相连因此,我们从它的上底面入手,先将上底面中的四条棱中剪开三条,然后沿着和连着的棱有公共点的侧棱顺次剪下去,到达下底面,然后再将下底面的四条棱中剪开三条,便可得到正方体的平面展开图如图,我们给正方体的12条棱进行编号,如果沿着棱剪开,我们就得到展开图(1);如果沿着展开,就得到展开图(2);如果沿着展开

9、就得到图(3);如果沿着展开,就可得到图(4)师:这位同学的方法,说明他很爱动脑子,抓住了正方体展成平面图形的特点,即六个正方形中每个正方形至少有一边与其他正方形相连的特点,很好生:老师,刚才的展开图,都是沿着和边有公共点的边剪开的,如果沿着和边也有公共点的边剪开后,好像和以上四种展开图差不多师:是的,如果沿继续剪开,正方体的平面展开图经过旋转,平移等都可以得到以上四种展开图,因此,我们在此不考虑由于旋转等造成的相对位置不同,将这种展开方式归于前面一类生:老师,我又发现同样将上底面的这三条棱展开,但接下来不沿着和有公共点的棱剪,而是沿着和无公共点的侧棱或继续剪至下底面的三条棱,便可得到如下两个

10、平面展开图(图(5)、图(6)师:我们可以观察以上六个立方体的平面展开图,它们有规律可寻找吗?生:老师,我觉得这六个平面展开图有共同的特性,中间连排的四个正方形恰好是正方体的侧面,而分布侧面两边的两个正方形无论和四个侧面中的哪一个相连,都能是正方体的平面展开图师:这位同学总结的太棒了,接下来,同学们可以看一个例题例1将下图中左边的图形折叠起来围成一个正方体,应该得到右图中的( ),先想一想,再做一做分析:由平面展开图可知,“”所在的正方形和“”所在的正方形是相对的两个面;而“”所在的正方形和“”所在的正方形是相邻的两个面,因此A、B都不正确而“”所在的正方形应和“”所在的正方形是相邻的两个面,

11、因此C也是不正确的,故应选D答案:D师:是不是立方体的平面展开图只有六种呢?同学们可以打开书看课本第十一页的“做一做”的图15的第2个图,你能设法得到它吗?同学们可以继续在小组中讨论、交流生:可以得到我们还像前面那样给正方体的每条棱做同样的编号,如果沿着剪开后,再分别沿着和剪开,便可得到展开图(7)类似的还可以得到图(8)、(9)生:老师,我还有一种展开的方法,刚才好几位同学的展开图中,都是侧面的三个或四个正方形相连,如果让他们两个两个相连结果会如何呢?我剪了六个同样大小的正方形作为正方体的六个面,我将这六个面摆成下面两个图的情形,如图(10)、(11),然后将它们折叠,结果发现这六个面围成了

12、一个正方体生:我们组也发现这两个图能折叠成一个正方体,而且我们还亲自做了实验,正方体能够展成上面的平面图只要沿着剪开后,再分别沿和以及剪开便可得到图(10)师:大家的想法很妙,能够用逆向思维的方法来处理手中的问题,很了不起生:我们组得到了展开图师:快告诉大家吧,怎么展开的生:沿着剪开后,再将和剪开,便得到展开图师:同学们用了逆向思维的方法先假设正方体的平面展开图为,然后再动手试验大家来看下面一个问题:如图(12),这个平面图形经过折叠后能否围成一个正方体(经过一番思考、讨论)生:我觉得不能,因为把一个正方体展开后6个正方形的每一个正方形至少有一边与其他正方形的某边重合,在这个图中,虽然满足了上

13、面的要求,但右上角的正方形和相邻的三个正方形相连的情形是无法折叠起来的,因此不能围成一个正方体师:是不是这样我们可以用手中的图形操作一下生:是这样的师:那么,老师就有这样一个问题:将正方体的某些棱剪开,展成一个平面图形,需要剪开几条棱呢?(学生经过小组讨论,交流后回答)生:需要剪开7条棱,由于正方体有12条棱,6个面,将其表面展成一个平面图形,其面与面之间相连的棱(即未剪开的棱)有5条,因此需剪开7条棱生:正方体的平面展开图,我们已经研究出十一种还有没有其他的?其他的常见几何体如圆柱、圆锥有平面展开图吗?(组继续讨论该同学提出的问题)生:正方体的平面展开图没有其他的,不考虑由于旋转等相对位置不

14、同的平面展开图就这十一种我认为圆柱、圆锥也有平面展开图,如圆柱可展成图(13),圆锥可展成图(14)师:回答的很好你比老师的想像要丰富得多,如果要是只展开圆柱和圆锥的侧面,会得到什么图形呢?同学们打开课本第十一页,我们一起来完成“想一想”(让学生按参考书上图猜想一下,如果按虚线剪开,这里的虚线其实是母线,没必要给学生介绍,但要告诉学生必须沿母线剪开)将图形展开,会得到什么图形;然后操作,老师在和同学做时,要加以指导,最后得出结论:圆柱和圆锥的侧面展开图分别是长方形和扇形三、课堂练习左图是正方体的表面展开图,如果将其合成原来的正方体(右图)时,与点P重合的两点应该是 ( ) AS和Z BT和YC

15、U和Y DT和V分析:由正方体的平面展开图,经过折叠后(如右图所示)的正方体,正方形ROUX作为背面,则OXYZ是底面,STUR成为上面,则剩余的三个面即为三个侧面,折叠过来后,P刚好与T和V重合因此应选D答案:D四、课时小结1经过动手操作,得到了关于正方体的十一种形式的平面展开图,发展了我们的空间观念和语言表达能力2通过想像和操作,得到了圆柱和圆锥的侧面展开图五、课后作业1课本习题14及试一试2预习13截一个几何体六、活动与探究将正方体的表面沿某些棱剪开,展开,在一个平面内有多少种不同的展开图?(旋转或翻折后相同的图形算一种)过程课堂上已对正方体的平面展开图做过讨论、研究,但是否它的平面展开图就此十一种,并没有给出一个最终的结果,通过课外继续探讨,可以更好地锻炼学生的空间观念和探求科学的精神结果共十一种板书设计12展开与折叠(二)1正方体的平面展开图(学生得出十一种展开图)2圆柱和圆锥的侧面展开图(学生得出侧面展开图)3课堂练习(学生板演)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服