ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:75.50KB ,
资源ID:7398283      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7398283.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(概率教案.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

概率教案.doc

1、 随机事件及其概率 一、教学目标: 1、知识与技能: (1)了解随机事件、必然事件、不可能事件的概念; (2)正确理解事件A出现的频率的意义; (3)正确理解概率的概念和意义,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系; (4)利用概率知识正确理解现实生活中的实际问题. 2、过程与方法: (1)发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高; (2)通过对现实生活中的“掷币”,“游戏的公平性”,、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法

2、. 3、情感态度与价值观: (1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识. 二、重点与难点: 教学重点:事件的分类;概率的定义以及和频率的区别与联系; 教学难点:用概率的知识解释现实生活中的具体问题. 三、学法指导: 引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性。 四、教学准备:硬币数枚,骰子若干个,幻灯片,计算机多媒体教学. 五、教学设想: 1、创设情境: 日常

3、生活中,有些问题是很难给予准确无误的回答的。例如,你明天什么时间起床? 7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?…… 2、基本概念: (1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件; (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件; (3)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件; (4)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=为事件A出现的概率:对于给定的随机

4、事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。 (5)频率与概率的区别与联系: 随机事件的频率,指此事件发生的次数nA与试验总次数n的比值 ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率 3、例题分析: 例1 、判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件? (1)“抛一石块,下落”. (2)“在标准大气压下且温度低于

5、0℃时,冰融化”; (3)“某人射击一次,中靶”; (4)“如果a>b,那么a-b>0”; (5)“掷一枚硬币,出现正面”; (6)“导体通电后,发热”; (7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”; (8)“某电话机在1分钟内收到2次呼叫”; (9)“没有水份,种子能发芽”; (10)“在常温下,焊锡熔化”. 解析:根据定义,事件(1)、(4)、(6)是必然事件;事件(2)、(9)、(10)是不可能事件;事件(3)、(5)、(7)、(8)是随机事件. 例2 、某射手在同一条件下进行射击,结果如下表所示: 射击次数n 10 20 50

6、 100 200 500 击中靶心次数m 8 19 44 92 178 455 击中靶心的频率 (1)填写表中击中靶心的频率; (2)这个射手射击一次,击中靶心的概率约是什么? 分析:事件A出现的频数nA与试验次数n的比值即为事件A的频率,当事件A发生的频率fn(A)稳定在某个常数上时,这个常数即为事件A的概率。 解:(1)表中依次填入的数据为:0.80,0.95,0.88,0.92,0.89,0.91. (2)由于频率稳定在常数0.89,所以这个射手击一次,击中靶心的概率约是0.89。 小结:概率实际上是频率的科学抽象,求某事件的概率

7、可以通过求该事件的频率而得之。 练习:一个地区从某年起几年之内的新生儿数及其中男婴数如下: 时间范围 1年内 2年内 3年内 4年内 新生婴儿数 5544 9607 13520 17190 男婴数 2883 4970 6994 8892 男婴出生的频率 (1)填写表中男婴出生的频率(结果保留到小数点后第3位); (2)这一地区男婴出生的概率约是多少? 解:(1)表中依次填入的数据为:0.520,0.517,0.517,0.517. (2)由表中的已知数据及公式fn(A)=即可求出相应的频率,而各个频率均稳定在常数0.518上,所以这一地

8、区男婴出生的概率约是0.518. 例3、 某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大? 分析:中靶的频数为9,试验次数为10,所以靶的频率为=0.9,所以中靶的概率约为0.9. 解:此人中靶的概率约为0.9;此人射击1次,中靶的概率为0.9;中10环的概率约为0.2. 例4 、如果某种彩票中奖的概率为,那么买1000张彩票一定能中奖吗?请用概率的意义解释。 分析:买1000张彩票,相当于1000次试验,因为每次试验的结果都是随机的,所以做1000

9、次试验的结果也是随机的,也就是说,买1000张彩票有可能没有一张中奖。 解:不一定能中奖,因为,买1000张彩票相当于做1000次试验,因为每次试验的结果都是随机的,即每张彩票可能中奖也可能不中奖,因此,1000张彩票中可能没有一张中奖,也可能有一张、两张乃至多张中奖。 例5、 在一场乒乓球比赛前,裁判员利用抽签器来决定由谁先发球,请用概率的知识解释其公平性。 分析:这个规则是公平的,因为每个运动员先发球的概率为0.5,即每个运动员取得先发球权的概率是0.5。 解:这个规则是公平的,因为抽签上抛后,红圈朝上与绿圈朝上的概率均是0.5,因此任何一名运动员猜中的概率都是0.5,也就是每个运

10、动员取得先发球权的概率都是0.5。 小结:事实上,只能使两个运动员取得先发球权的概率都是0.5的规则都是公平的。 4、课堂小结:概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索。 5、自我评价与课堂练习: 1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件 B.随机事件 C.不可能事件 D.无法确定

11、 2.下列说法正确的是( ) A.任一事件的概率总在(0.1)内 B.不可能事件的概率不一定为0 C.必然事件的概率一定为1 D.以上均不对 3.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答题。 每批粒数 2 5 10 70 130 700 1500 2000 3000 发芽的粒数 2 4 9 60 116 282 639 1339 2715 发芽的频率 (1)完成上面表格: (2)该油菜子发芽的概率约是多少? 4.某篮球运动员,在同一条件下

12、进行投篮练习,结果如下表如示。 投篮次数 进球次数m 进球频率 (1)计算表中进球的频率; (2)这位运动员投篮一次,进球的概率约为多少? 5.生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了。”学了概率后,你能给出解释吗? 6、评价标准: 1.B[提示:正面向上恰有5次的事件可能发生,也可能不发生,即该事件为随机事件。] 2.C[提示:任一事件的概率总在[0,1]内,不可能事件的概率为0,必然事件的概率为1.] 3.解:(1)填入

13、表中的数据依次为1,0.8,0.9,0.857,0.892,0.910,0.913,0.893,0.903,0.905.(2)该油菜子发芽的概率约为0.897。 4.解:(1)填入表中的数据依次为0.75,0.8,0.8,0.85,0.83,0.8,0.76.(2)由于上述频率接近0.80,因此,进球的概率约为0.80。 5.解:天气预报的“降水”是一个随机事件,概率为90%指明了“降水”这个随机事件发生的概率,我们知道:在一次试验中,概率为90%的事件也可能不出现,因此,“昨天没有下雨”并不说明“昨天的降水概率为90%”的天气预报是错误的。 7、作业:根据情况安排

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服