ImageVerifierCode 换一换
格式:PDF , 页数:11 ,大小:5.41MB ,
资源ID:728428      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/728428.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(水系锌离子电池嵌入负极材料TiX2(X=S,Se)的储锌机制.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

水系锌离子电池嵌入负极材料TiX2(X=S,Se)的储锌机制.pdf

1、水系锌离子电池(ZIBs)以其低成本、高安全性和环境友好的优点受到了研究者的广泛关注,成为大规模电化学储能系统的理想选择之一。然而锌金属负极在应用时面临着锌枝晶生长、腐蚀反应和副反应等难以克服的障碍,严重制约了水系锌离子电池的发展。探索可替代锌金属的储锌负极是应对上述问题的有效策略,因此研究者围绕过渡金属氧化物、硫化物和导电聚合物开展了深入研究。以TiX2(X=S,Se)为代表的二维过渡金属硫族化合物(TMDs)具有较大的层间距和快速的离子传输通道,可作为锌离子电池的负极,但其储锌反应机制尚未得到完整的揭示。在本文中,我们使用密度泛函理论(DFT)计算方法系统地研究锌离子在TiX2中的嵌入反应

2、。首先我们采用群论去描述嵌锌TiX2的稳定层间构型的特点,定义了一个依赖于超胞并且只涉及平移旋转两种对称操作的群,其子群可以用来描述层间构型的对称性,而且用来描述最稳定构型的子群总是倾向于有最大的阶数。基于该计算得到的一系列对应于不同放电深度的TiX2的稳定结构,我们发现TiS2和TiSe2两种材料在锌嵌入/脱出过程中的开路电压(OCV)均低于0.5 V。态密度(DOS)的计算结果表明TiX2具有很好的电子导电性,而分波态密度(PDOS)的结果显示随着锌的嵌入闭壳层的Ti4+还原成开壳层的Ti3+,并且伴随着ZnX键的生成。Bader电荷分析的结果表明随着X的嵌入,X相比Ti得到了更多的负电荷

3、,意味着X也参与了TiX2的氧化还原过程。爬坡弹性带方法(CINEB)计算的结果证实了Zn2+在TiX2中具有较低的扩散能垒(对于TiS2是0.333 eV,对于TiSe2是0.338 eV)。本文的研究结果不仅从本质上证明了TiX2适合作为锌离子电池的嵌锌负极材料,而且为其他高性能TMDs电池材料的DFT研究提供了新的见解。关键词:关键词:锌离子电池;TiX2负极;第一性原理计算;群论 中图分类号:中图分类号:O646 1 Introduction Among all kinds of aqueous batteries,aqueous Zn-ion battery(ZIBs)has att

4、racted significant attentions towards its potential application in large-scale electrochemical energy storage systems due to its low cost,inherent safety,and environmental benignity 1,2.To date,tremendous endeavors have been devoted to exploring transition metal oxides as the cathodes(MnO2 and V2O5)

5、for ZIBs 36.Despite the extremely high capacity achieved for these cathodes,the zinc metal anode still suffers from dendrites growth,corrosion,and side reactions which substantially hinder the development of ZIBs 7,8.Facing thestubborn challenges,alloying tactics,surface engineering and electrolyte

6、optimization have been proposed as effect strategies to promote the electrochemical reversibility and cycle life of Zn metal anodes 911.However,the inherent shortcomings of zinc anode still exist,which necessitated the investigation of zinc-free anode for aqueous ZIBs 12,13.To date,several zinc-free

7、 anode materials for aqueous ZIBs has been reported,for instance,the Chevrel phase Mo6S8,hexagonal MoO3,and two-dimensional metal dichalcogenides(TMDs).Among them,TMDs especially TiX2(X=S,Se),are regarded as the most appealing candidates because of their large interlayer space and facile 2D ion-tran

8、sport channels.Jiang and co-workers demonstrated that presodiated TiS2(Na0.14TiS2)could work as a long-cycling intercalated anode for aqueous ZIBs with a suitable potential of 0.3 V(vs.Zn2+/Zn)14.Gao et al.15 verified the interlayer spacing of 0.601 nm makes TiSe2 suitable for(de)intercalation of zi

9、nc ions.Those recent works consistently pointed out that TiX2 is a family of potential anode materials for ZIBs,whereas the reaction mechanism is still lack of fundamental research.Herein,we perform first-principle calculations to systematically investigate the Zn2+intercalation mechanisms of TiX2(X

10、=S,Se)for the first time.The Zn2+intercalation site is determined,and group theory is used to depict the interlayer configuration of zinc-intercalated TiX2,which gives insight into the investigation of the structural properties of other TMDs electrode materials for aqueous ZIBs.Based on the methodol

11、ogy above,redox potentials,charge transfer properties and Zn2+diffusion barriers are comprehensively studied to illustrate the superiority of TiX2 as zinc-free anode materials for aqueous ZIBs.2 Computational details First-principle calculations based on density functional theory(DFT)were implemente

12、d in Vienna ab initio simulation package(VASP)code.The projector augmented wave(PAW)pseudopotential 16 was used and the outer-shell electron configurations were 3p63d24s2 for Ti,3d104s2 for Zn,3s23p4 for S and 4s24p4 for Se.We employed the Perdew-Burke-Ernzerh of 物理化学学报 Acta Phys.-Chim.Sin.2023,39(8

13、),2212037(3 of 11)(PBE)functional of generalized gradient approximation(GGA)17 to describe the exchange-correlation potential and the cutoff energy was set to 500 eV.In order to describe the strong electron-correlation effect on the Ti 3d orbitals,the Hubbard GGA+U model was used with an effective U

14、eff value of 2.1 eV 18 for calculations of TiS2 and 3.7 eV 19 for calculations of TiSe2.A gamma-centered k-mesh of 12 12 7 was used to sample the Brillouin zone of the TiX2 unit cell.The energy convergence criteria were set to 105 eV and the force convergence criteria was 0.1 eVnm1 DFT-D3 method 20

15、was employed for van der Waals correction.A supercell of 4 4 1 with one zinc ion intercalated was used to investigate the zinc ion intercalation site and the diffusion barrier of zinc ion.Different supercells of 4 4 1,3 3 1 and 2 2 1 were used to investigate the interlayer configuration of zinc-inte

16、rcalated TiX2.The climbing image nudged elastic band(CINEB)method 21 was employed to calculate the diffusion barriers of zinc ions.3 Results and discussion 3.1 Zinc ion intercalation sites and TiX2 structure TiX2 composed of infinite X/Ti/X sandwiched monolayers combined by van der Waals force,has a

17、 trigonal phase with space group P3m1 18,19,TiX2 is in 1T phase,as shown in Fig.1a.The calculated lattice parameters of TiS2 are a=b=0.3437 nm and c=0.5780 nm,and the calculated lattice parameters of TiSe2 are a=b=0.3606 nm and c=0.6153 nm,which are in accordance with experimental results 22,23.In o

18、rder to determine the optimal zinc ion intercalation site,we employed a 4 4 1 supercell with one Zn2+ion intercalation for both TiS2 and TiSe2 to calculate their formation energy using the following formula,Ef=EZn(TiX2)4 E(TiX2)4 EZn (1)where EZn(TiX2)4 and E(TiX2)4 are energies of the TiX2 supercel

19、ls with and without one Zn2+ion intercalation,and EZn is the energy of zinc metal per atom.According to the formula,the optimal intercalation site has the most negative value of Ef.The results show that there are only two kinds of intercalation sites which are octahedral site(O-site)and tetrahedral

20、site(T-site)because Zn2+ion would move to one of these two sites after structural optimization if we put the Zn2+ion somewhere else in the POSCAR file,as shown in Fig.1b,c.The calculated formation energies demonstrate that O-site is the optimal Zn2+intercalation site for both TiS2 and TiSe2,as shown

21、 in Table 1.These results are consistent with the intercalation behaviors of Li+and Na+ions into interlayers of 1T phase TMDs reported before 2426.3.2 Configurations of zinc-intercalated TiX2 It is still tough to investigate the structural changes of TMDs during the metal ion(de)intercalation becaus

22、e many possible configurations need to be taken into consideration which is extremely computationally expensive.For example,in order to investigate the structural changes of TiS2 during the process of Na+intercalation,Li et al.27 chose two supercells(2 2 3 and 6 1 2)which were not large.However,1038

23、 configurations had been taken into consideration even if a method was proposed to reduce the number of configurations.Hence,in order to make larger supercells,more complex configurations,and more accurate calculations available,a more effective method is needed to greatly reduce the number of confi

24、gurations.It is worth noting that a specific supercell intercalated by a specific number of metal ions has many configurations but only one configuration with the lowest energy.Moreover,Ran et al.28 have proposed a group-subgroup transformation method to predict the ordered ground states of systems.

25、So,it is possible to characterize those configurations by group theory.Based on these works,we defined a group to characterize the configurations with the lowest energy and greatly reduced the number of configurations that need to be considered for a specific supercell of TX2 intercalated by specifi

26、c number of zinc ions.Obviously,the interlayer O-sites and the TiX2 monolayer have the same two-dimensional Bravais lattice,and every single O-site in the same interlayer can be abstracted into a lattice point of the two-dimensional Bravais lattice,in other words,there is a one-to-one relationship b

27、etween O-sites and Ti atoms.As shown in Fig.2a.As the O-sites in the same interlayers and the TiX2 monolayer has the same symmetry,we used the two-dimensional Bravais lattice to discuss the issue and used configuration to represent the interlayer configuration of zinc-intercalated TiX2 below.For a s

28、pecific supercell of TiX2 intercalated by specific number of zinc ions,for example,a 3 3 1supercell inter-calated by one zinc ion,different configurations mean the zinc ion corresponds to different 9 lattices points in the supercell,so in this case,the total number of different configurations is C91

29、=9,as shown in Fig.2b.If the 3 3 1supercell is intercalated by two or three zinc ions,the total numbers of different configurations are C92=36 and C93=84 respectively.So,if an M N 1 supercell is intercalated by P zinc ions(M,N,P are Table 1 Formation energy(eV)of one Zn into TiS2 and TiSe2.System O-

30、site T-site TiS2 0.900 0.749 TiSe2 0.188 0.007 Fig.1 (a)Side and top views of 1-T phase TiX2 where the blue balls denote Ti atoms and the black balls denote X atoms.(b)Side and top views of O-site where the red balls denote zinc atoms.(c)Side and top views of T-site.物理化学学报 Acta Phys.-Chim.Sin.2023,3

31、9(8),2212037(4 of 11)all positive integers and MN P),the total number of different configurations is CMNP.Obviously,there are over one hundred different configurations even if the small 3 3 1supercell is intercalated by one,two and three zinc ions.In such simple case,a great number of different conf

32、igurations still need to be taken into consideration that is why the method of reducing the number of configurations is necessary.It is easy to find that all the 9 configurations of the 3 3 1supercell intercalated by one zinc ion are equivalent,in other words,the nine different configurations repres

33、ent the same structure,and these configurations can coincide with each other by symmetric operations of translation and rotation on the Bravais lattice.In more general cases,for example,an M N 1 supercell intercalated by P zinc ions,there are also many equivalent configurations which can coincide wi

34、th each other by similar symmetric operations of rotation and translation.These operations are related to the symmetry of the two-dimensional Bravais lattice and specific supercell,which can be accurately described by group theory,and many equivalent configurations can be reduced to one configuratio

35、n.A cyclic group of order 6(order means the number of elements of a group)was chosen to describe the rotational symmetry of the Bravais lattice,which can be denoted as R=r,r2,r3,r4,r5,e=r6.The axis of rotation is perpendicular to the plane of the Bravais lattice and can intersect the plane at any la

36、ttice points,and r,r2,r3,r4,r5,e=r6 denote operations of rotation by/3,2/3,4/3,5/3,2(or 0)respectively.If the rotation axis is determined,the Bravais lattice will coincide with itself after any operation of group R.Considering the group that describes the translation symmetry of the Bravais lattice

37、is infinite group,it is more convenient to define a new finite group to describe the translation symmetry for a specific supercell than to use the infinite group.Herein,The 3 3 1supercell was used as an example to define the new finite group.Firstly,considering the translation of the Bravais lattice along the direction of basis vector a,a cyclic group of order 3 was chosen to describe the translation symmetry of the Bravais lattice

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服