ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:34.50KB ,
资源ID:7234934      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7234934.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(五年级奥数题集.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

五年级奥数题集.doc

1、 五年级奥数题集 一、简单列举题 1.用0,1,2,3四个数字组成一个三位数,可以组成多少个偶数(每个数字最多用一次)? 2.在一个长方形中划6条直线,最多能把它分成多少份? 3.从1到100的自然数中,完全不含数字“9”的有多少个? 4.a和b是自然数,且a+b=81。a和b的积最大是多少? 5.a,b,c是三个互不相等的正整数,且a+b+c=30,那么a,b,c的积最大是多少?最小是多少? 二、数字趣味题 1.一个三位数的各位数字之和是17,其中十位数字比个位数字大1,如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198。求

2、原数。 2.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数。 3.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少? 4.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数。 5.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数。 参考答案(数字趣味题):476;2.46;3.121;4.857142;5.3963 三、专题训练题:“牛吃草”问题 故事:牛顿的“

3、牛吃草”问题 英国伟大的科学家牛顿,曾经写过一本数学书。书中有一道非常有名的、关于牛在牧场上吃草的题目,后来人们就把这类题目称为“牛顿问题”。 “牛顿问题”是这样的:“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。” 这类题目的一般解法是:把一头牛一天所吃的牧草看作1,那么就有: (1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。) (2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。) (3)1天新

4、长的草为:(207-162)÷(9-6)=15 (4)牧场上原有的草为:27×6-15×6=72 (5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天) 所以养21头牛,12天才能把牧场上的草吃尽。 请你算一算: 有一牧场,如果养25只羊,8天可以把草吃尽;养21只羊,12天把草吃尽。如果养15只羊,几天能把牧场上不断生长的草吃尽呢? 其他试题: 1、有一堆割下来的青草可供45头牛吃20天,那么可供36头牛吃多少天? 2.有一堆割下来的青草可供20头牛吃15天,若一头牛每天的吃草量相当于4头羊的吃草量,那

5、么这堆青草可供120头羊吃多少天? 3.牧场上一片草,可供23匹马吃9天,或者可供27匹马吃6天,如果草每天匀速生长,可供21匹马吃多少天 4.一片青草,每天生长的速度相同,如果24头牛6天可以把草吃完,或者20头牛10天可以把草吃光。那么多少头牛12天可以把草吃尽? 5.一只船发现漏水时,已经进了一些水,现在水匀速进入船内,如果3人淘水40分钟可以淘完;6人淘水16分钟可以把水淘完,那么,5人淘水几分钟可以把水淘完? 6.27头牛在吃牧场上一片匀速生长的青草可以吃6周,如果卖掉4头牛,那么这些青草可供这群牛吃9周,如果卖掉2头牛,那么这些青草可供这群牛吃几周? 7.一水库存水量一定

6、河水均速入库,12台抽水机连续6天可以抽干,6台同样的抽水机连续15天可以抽干,那么5台抽水机多少天可以抽干? 8.有一口水井,井底连续不断涌出泉水,每分钟涌出的水量相等,如果使用5架抽水机来抽水,20分钟可以抽完;如果使用3架抽水机来抽水,36分钟可以抽完,现在要求12分钟内抽完进水,需要抽水机多少架? 9.某公园的检票口,在开始检票前已有一些人排队等候,检票开始后第10分钟有100人前来排队检票,1个检票口每分钟能让25人入内。如果只有1个检票口,检票开始8分钟后就没有人排队;如果同时开放2个检票口,那么检票开始后多少分钟就没有人排队? 10.一场牧场长满青草,这些青草可供10头牛

7、吃20天,或者可供15头牛吃10天,问可供25头吃多少天? 四、竞赛提高题 一片茂盛的草地,每天的生长速度相同,现在这片青草16头牛可吃15天,或者可供100只羊吃6天,而4只羊的吃草量相当于1头牛的吃草量,那么8头牛与48只羊一起吃,可以吃多少天? 2.有一口井,井底匀速泉水,若用6台抽水机20天就能把井水抽干,若用8台抽水机10天就可以把水抽干,若要5天把水抽干,需要多少台同样的抽水机来抽? 3.一片草地,可供5头牛吃30天,或者可供4头牛吃40天,如果4头牛吃30天,又增加了2头牛一起吃,还可以再吃几天? 4. 17头牛吃28公亩的草,84天可以吃完;22头牛同样牧场33公

8、亩的草54天可吃完,几头牛吃同样牧场40公亩的草,24天可吃完?(假设每公亩牧草原草量相等,且匀速生长) 5.一水池有若干相同的抽水管,有一进水管,进水管匀速不断地进水。若用24根抽水管抽水,6小时可把池中的水抽干,若用21根抽水管抽水,8小时即可把池中的池水抽干,那么用16根抽水管抽水,多少小时即可把水池的水抽干? 6.有一口井,井底不断有泉水匀速,若要把井水抽干,8台抽水机需要12小时,10台同样的抽水机需要8小时,那么用6台同样的抽水机可以几小时抽完? 五、数的整除 1. 任一个三位数连续写两次得到一个六位数.试证:这个六位数能同时被7、11、13整除. 2. 证明:任何两

9、个自然数的和、差、积中,至少有一个数能被3整除. 3. 某个七位数2000□□□能同时被1、2、3、4、5、6、7、8、9整除,那么最后三位是什么? 4. 在865后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数值尽可能的小。 5.求能被26整除的所有六位数(x1991y)。 参考答案: 1.提示:该数能被1001整除;2.略;3.8,8,0;4.865020;5.819910、119912、719914和619918 六、最大公约数和最小公倍数 1.两个数的最大公约数是4,最小公倍数是252,其中一个数是28,另一个数是多少? 2.已知两个自然数的

10、积是5766,它们的最大公约数是31.求这两个自然数。 3.已知两个自然数的和是54,并且它们的最小公倍数与最大公约数之间的差为114,求这两个数。 4.将一块长3.57米、宽1.05米、高0.84米的长方体木料,锯成同样大小的正方体小木块.问当正方体的边长是多少时,用料最省且小木块的体积总和最大?(不计锯时的损耗,锯完后木料不许有剩余) 5.写出小于20的三个自然数,使它们的最大公约数是1,但其中任意两个数都不互质。 参考答案: 1.36;2.31,186或62,93;3.24,30;4.21厘米;5.6,10,15或10,12,15或10,15,18 七、奇偶分析 1.能

11、否在下式中填入适当的“+”,“-”,使等式成立? 9□8□7□6□5□4□3□2□1=28 2.在a、b、c三个数中,有一个是2003,一个是2004,一个是2005。问(a-1)(b-2)(c-3)是奇数还是偶数。 3.用代表整数的字母a、b、c、d写成等式组:   a×b×c×d-a=1991   a×b×c×d-b=1993   a×b×c×d-c=1995   a×b×c×d-d=1997   试说明:符合条件的整数a、b、c、d是否存在。 4.有一串数,最前面的四个数依次是1、9、8、7.从第五个数起,每一个数都是它前面相邻四个数之和的个位数字.问:在这一串数中,会

12、依次出现1、9、8、8这四个数吗? 5.任意改变某一个三位数的各位数字的顺序得到一个新数.试证新数与原数之和不能等于999。 参考答案: 1.不能;2.偶数;3.不存在;4.提示:先按规律写出一些数来,再找其奇、偶性的排列规律,便可得到答案:不会依次出现1、9、8、8这四个数。5.略 八、行程问题 1.甲、乙、丙三人进行200米赛跑,当甲到终点时,乙离终点还有20米,丙离终点还有25米,如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多少米? 2.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.甲从A地,乙和丙从B地同时出发相向而行,甲

13、和乙相遇后,过了15分钟又与丙相遇,求A、B两地间的距离。 3.甲、乙、丙是一条路上的三个车站,乙站到甲、丙两站的距离相等,小强和小明同时分别从甲、丙两站出发相向而行,小强经过乙站100米时与小明相遇,然后两人又继续前进,小强走到丙站立即返回,经过乙站300米时又追上小明,问:甲、乙两站的距离是多少米? 4.周长为400米的圆形跑道上,有相距100米的A、B两点,甲、乙两人分别从A、B两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A时,乙恰好跑到B.如果以后甲、乙跑的速度和方向都不变,那么追上乙时,甲共跑了多少米(从出发时算起)? 5.一条公路上,有一个骑车人和一个步行人,

14、骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车? 参考答案:1.5又5/9米;2.16.5千米;3.300米;4.1000米;5.5分钟  九、一周测验 1.用数字6,7,8各两个,组成一个6位数,使它能被168整除。这个六位数是多少?  2.有4个不同的正整数,其中任两个数的和总能被它们的差整除,要求最大的数与最小的数的和尽可能小,求这4个数。  3.两个数的差为2,并且其最小公倍数与最大公约数的差为142。求这两个数。 4.A和B是奇数,它们的最大

15、公约数是3,求A+B和A-B的最大公约数。  5.某校六年级学生参加区数学竞赛,试题共40道,评分标准是:答对一题给3分,答错一题倒扣1分.某题不答给1分,请说明该校六年级参赛学生得分总和一定是偶数。 6.假设n盏有拉线开关的灯亮着,规定每次拉动(n-1)个开关,能否把所有的灯都关上?请证明此结论,或给出一种关灯的办法。  7.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?  8.A、B两辆汽车同时从甲、乙两站相对开出,两车第一次在距甲站32公里处相遇,相遇后两车继续行驶,各自到达乙、甲两站后,立即沿原路返回,第二次在距甲站64公里处相遇,甲、乙两站间相距多少公里? 6

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服