ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:38.50KB ,
资源ID:7230836      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7230836.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(运筹学练习.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

运筹学练习.doc

1、一、 线性规划3.可行解一定是基本解4.基本解可能是可行解5.线性规划的可行域无界则具有无界解7.xj 的检验数表示变量 xj 增加一个单位时目标函数值的改变量14.任何变量一旦出基就不会再进基15.人工变量一旦出基就不会再进基16.普通单纯形法比值规则失效说明问题无界18.当最优解中存在为零的基变量时,则线性规划具有多重最优解19.当最优解中存在为零的非基变量时,则线性规划具唯一最优解20.可行解集不一定是凸集二 对偶规划1.任何线性规划都存在一个对应的对偶线性规划2.原问题(极大值)第i个约束是“”约束,则对偶变量yi03.互为对偶问题,或者同时都有最优解,或者同时都无最优解11.对偶问题

2、有可行解,原问题无可行解,则对偶问题具有无界解12.原问题无最优解,则对偶问题无可行解13.对偶问题不可行,原问题无界解14.原问题与对偶问题都可行,则都有最优解17. 如果某资源的影子价格为a, 其他条件不变时,该资源增加2个单位,目标函数将增加2a18.对偶单纯法换基时是先确定出基变量,再确定进基变量23.减少一约束,目标值不会比原来变差24.增加一个变量,目标值不会比原来变好三、整数规划1.整数规划的最优解是先求相应的线性规划的最优解然后取整得到2.部分变量要求是整数的规划问题称为纯整数规划3.求最大值问题的目标函数值是各分枝函数值的上界4.求最小值问题的目标函数值是各分枝函数值的下界5

3、.变量取0或1的规划是整数规划7. 01规划的变量有n个,则有2n个可行解五、运输问题4.产地数为3,销地数为4的平衡运输问题有7个基变量5.mn1个变量组构成一组基变量的充要条件是它们不包含闭回路6.运输问题的检验数就是其对偶变量8.运输问题的位势就是其对偶变量13.若运输问题的供给量与需求量为整数,则一定可以得到整数最优解14.按最小元素法求得运输问题的初始方案, 从任一非基格出发都存在唯一一个闭回路17.5个产地6个销地的平衡运输问题有11个变量18.5个产地6个销地的平衡运输问题有30个变量六、网络模型2.最大流问题是找一条从起点到终点的路,使得通过这条路的流量最大3.容量Cij是弧(

4、i,j)的最大通过能力4.流量fij是弧(i,j)的实际通过量10. 若图G是树,则图G的任一对顶点之间一定只有一条链.11. 求解最短路问题的狄克斯特算法既可解决无向图的最短路问题,也可解决有向图的最短路问题。12.狄克斯特算法是求最大流的一种标号算法13.破圈法是:任取一圈,去掉圈中最长边,直到无圈14.避圈法(加边法)是:去掉图中所有边,从最短边开始添加,加边的过程中不能形成圈,直到连通(n1条边)15. 在网络G中从始点到终点的最大流的流量不一定等于分离该始点和终点的最小割的容量。1 线性规划3 = 错4= 对5= 错7= 对14= 错15= 对16= 对18 = 错19= 错20 = 错2对偶问题1=对2= 错3 = 对11 = 对12= 错13 = 错14 = 对17=错18= 对 23= 对24= 错3 整数规划1= 错2 = 错3 = 对4 = 对5 = 对7 = 错5 运输问题4 = 错5= 对6 = 错8 = 对13 = 对14 = 对17 = 错18 = 对6 网络模型2 = 错3 = 对4 = 对10=对11=对12 = 错13 = 对14 = 对15=错

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服