ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:353.50KB ,
资源ID:7206611      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7206611.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(基本求导积分公式.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

基本求导积分公式.doc

1、1.基本求导公式 ⑴ (C为常数)⑵ ;一般地,。 特别地:,,,。 ⑶ ;一般地,。 ⑷ ;一般地,。 2.求导法则 ⑴ 四则运算法则 设f(x),g(x)均在点x可导,则有:(Ⅰ); (Ⅱ),特别(C为常数); (Ⅲ),特别。 3.微分 函数在点x处的微分: 4、 常用的不定积分公式 (1) ; (2) ; ; ; (3)(k为常数) 5、定积分 ⑴ ⑵ 分部积分法 设u(x),v(x)在[a,b]上具有连续导数,则 6、线性代数 特殊矩阵的概念 (1)、零矩阵 (2)、单位矩阵二阶 (3)、对角矩阵(4)、对称矩阵 (5)、上三角形

2、矩阵下三角形矩阵 (6)、矩阵转置转置后 6、矩阵运算 7、MATLAB软件计算题 例6 试写出用MATLAB软件求函数的二阶导数的命令语句。 解:>>clear; >>syms x y; >>y=log(sqrt(x+x^2)+exp(x)); >>dy=diff(y,2) 例:试写出用MATLAB软件求函数的一阶导数的命令语句。 >>clear; >>syms x y; >>y=log(sqrt(x)+exp(x)); >>dy=diff(y) 例11 试写出用MATLAB软件计算定积分的命令语句。 解:>>clear; >>syms x

3、 y; >>y=(1/x)*exp(x^3); >>int(y,1,2) 例 试写出用MATLAB软件计算定积分的命令语句。 解:>>clear; >>syms x y; >>y=(1/x)*exp(x^3); >>int(y) MATLAB软件的函数命令 表1 MATLAB软件中的函数命令 函数 MATLAB 运算符号 运算符 + - * / ^ 功能 加 减 乘 除 乘方 典型例题 例1 设某物资要从产地

4、A1,A2,A3调往销地B1,B2,B3,B4,运输平衡表(单位:吨)和运价表(单位:百元/吨)如下表所示: 运输平衡表与运价表 销地 产地 B1 B2 B3 B4 供应量 B1 B2 B3 B4 A1 7 3 11 3 11 A2 4 1 9 2 8 A3 9 7 4 10 5 需求量 3 6 5 6 20 (1)用最小元素法编制的初始调运方案, (2)检验上述初始调运方案是否最优,若非最优,求最优调运方案,并计算最低运输总费用。 解:用最小元素法编制

5、的初始调运方案如下表所示: 运输平衡表与运价表 销地 产地 B1 B2 B3 B4 供应量 B1 B2 B3 B4 A1 4 3 7 3 11 3 11 A2 3 1 4 1 9 2 8 A3 6 3 9 7 4 10 5 需求量 3 6 5 6 20 找空格对应的闭回路,计算检验数:l=1,l=1,l=0,l=-2 已出现负检验数,方案需要调整,调整量为 1 调整后的第二个调运方案如下表: 运输平衡表与运价表 销地 产地 B

6、1 B2 B3 B4 供应量 B1 B2 B3 B4 A1 5 2 7 3 11 3 11 A2 3 1 4 1 9 2 8 A3 6 3 9 7 4 10 5 需求量 3 6 5 6 20 求第二个调运方案的检验数:l=-1 已出现负检验数,方案需要再调整,调整量为 2 调整后的第三个调运方案如下表: 运输平衡表与运价表 销地 产地 B1 B2 B3 B4 供应量 B1 B2 B3 B4 A1 2 5 7 3 11 3 11

7、 A2 1 3 4 1 9 2 8 A3 6 3 9 7 4 10 5 需求量 3 6 5 6 20 求第三个调运方案的检验数: l=2,l=1,l=2,l=1,l=9,l=12 所有检验数非负,故第三个调运方案最优,最低运输总费用为: 2×3+5×3+1×1+3×8+6×4+3×5=85(百元) 例2 某物流公司下属企业经过对近期销售资料分析及市场预测得知,该企业生产的甲、乙、丙三种产品,均为市场紧俏产品,销售量一直持续上升经久不衰。今已知上述三种产品的单位产品

8、原材料消耗定额分别为4公斤、4公斤和5公斤;三种产品的单位产品所需工时分别为6台时、3台时和6台时。另外,三种产品的利润分别为400元/件、250元/件和300元/件。由于生产该三种产品的原材料和工时的供应有一定限制,原材料每天只能供应180公斤,工时每天只有150台时。 1.试建立在上述条件下,如何安排生产计划,使企业生产这三种产品能获得利润最大的线性规划模型。 2. 写出用MATLAB软件计算该线性规划问题的命令语句。 解:1、设生产甲、乙、丙三种产品分别为x1件、x2件和x3件,显然x1,x2,x3≥0 线性规划模型为 2.解上述线性规划问题的语句为: >>clear;

9、 >>C=-[400 250 300]; >>A=[4 4 5;6 3 6]; >>B=[180;150]; >>LB=[0;0;0]; >>[X,fval,exitflag]=linprog(C,A,B,[],[],LB) 例3已知矩阵,求: 解: 例4 设y=(1+x2)ln x,求: 解: 例5 设,求: 解: 例7 某厂生产某种产品的固定成本为2万元,每多生产1百台产品,总成本增加1万元,销售该产品q百台的收入为R (q)=4q-0.5q2(万元)。当产量为多少时,利润最大?最大利润为多少? 解:产量为q百台的总成本函数为:C(q)=q+2

10、 利润函数L (q)=R (q)-C(q)=-0.5q2+3q-2 令ML(q)=-q+3=0 得唯一驻点 q=3(百台) 故当产量q=3百台时,利润最大,最大利润为 L (3)=-0.5×32+3×3-2=2.5(万元) 例8 某物流企业生产某种商品,其年销售量为1000000件,每批生产需准备费1000元,而每件商品每年库存费为0.05元,如果该商品年销售率是均匀的,试求经济批量。 解:库存总成本函数 令得定义域内的唯一驻点q=200000件。 即经济批量为200000件。 例9 计算定积分: 解: 例10 计算定积分: 解: 教学补充说明 1. 对编程问题,要记

11、住函数ex,ln x,在MATLAB软件中相应的命令函数exp(x),log(x),sqrt(x); 2 对积分问题,主要掌握积分性质及下列三个积分公式: (a≠-1) 7. 记住两个函数值:e0=1,ln 1=0。 模拟试题 一、单项选择题:(每小题4分,共20分) 1. 若某物资的总供应量( C )总需求量,可增设一个虚销地,其需求量取总供应量与总需求量的差额,并取各产地到该销地的单位运价为0,则可将该不平衡运输问题化为平衡运输问题。 (A) 等于 (B) 小于 (C) 大于 (D) 不超过 2.某物流公司有三种化学原料A1,A2,A3。每

12、公斤原料A1含B1,B2,B3三种化学成分的含量分别为0.7公斤、0.2公斤和0.1公斤;每公斤原料A2含B1,B2,B3的含量分别为0.1公斤、0.3公斤和0.6公斤;每公斤原料A3含B1,B2,B3的含量分别为0.3公斤、0.4公斤和0.3公斤。每公斤原料A1,A2,A3的成本分别为500元、300元和400元。今需要B1成分至少100公斤,B2成分至少50公斤,B3成分至少80公斤。为列出使总成本最小的线性规划模型,设原料A1,A2,A3的用量分别为x1公斤、x2公斤和x3公斤,则目标函数为( D )。 (A) max S=500x1+300x2+400x3 (B) min S=

13、100x1+50x2+80x3 (C) max S=100x1+50x2+80x3 (D) min S=500x1+300x2+400x3 3. 设,并且A=B,则x=( C )。 (A) 4 (B) 3 (C) 2 (D) 1 4.设运输某物品q吨的成本(单位:元)函数为C(q)=q2+50q+2000,则运输该物品100吨时的平均成本为( A )元/吨。 (A) 170 (B) 250 (C) 1700 (D) 17000 5. 已知运输某物品q吨的边际收入函数为MR (q),则运输该物品从100吨到300吨时的收入增加量为

14、 D )。 (A) (B) (C) (D) 二、计算题:(每小题7分,共21分) 6.已知矩阵,求:AB+C 解: 7. 设,求: 解: 8. 计算定积分: 解: 三、编程题:(每小题6分,共12分) 9. 试写出用MATLAB软件求函数的二阶导数的命令语句。解:>>clear; >>syms x y; >>y=log(sqrt(x+x^2)+exp(x)); >>dy=diff(y,2) 10. 试写出用MATLAB软件计算定积分的命令语句。 解:>>clear; >>syms x y; >>y=x*exp(sqrt(x));

15、>>int(y,0,1) 四、应用题(第11、12题各14分,第13题19分,共47分) 11. 某物流企业生产某种商品,其年销售量为1000000件,每批生产需准备费1000元,而每件商品每年库存费为0.05元,如果该商品年销售率是均匀的,试求经济批量。 解: 库存总成本函数 令得定义域内的惟一驻点q=200000件。 即经济批量为200000件。 12. 某物流公司下属企业经过对近期销售资料分析及市场预测得知,该企业生产的甲、乙、丙三种产品,均为市场紧俏产品,销售量一直持续上升经久不衰。今已知上述三种产品的单位产品原材料消耗定额分别为4公斤、4公斤和5公斤;三种产品的单位产品所

16、需工时分别为6台时、3台时和6台时。另外,三种产品的利润分别为400元/件、250元/件和300元/件。由于生产该三种产品的原材料和工时的供应有一定限制,原材料每天只能供应180公斤,工时每天只有150台时。试建立在上述条件下,如何安排生产计划,使企业生产这三种产品能获得利润最大的线性规划模型,并写出用MATLAB软件计算该线性规划问题的命令语句。 解:设生产甲、乙、丙三种产品分别为x1件、x2件和x3件,显然x1,x2,x3≥0 线性规划模型为 解上述线性规划问题的语句为: >>clear; >>C=-[400 250 300]; >>A=[4 4 5;6 3 6

17、]; >>B=[180;150]; >>LB=[0;0;0]; >>[X,fval,exitflag]=linprog(C,A,B,[],[],LB) 线性规划习题 1. 某物流公司下属企业生产甲、乙两种产品,要用A,B,C三种不同的原料,从工艺资料知道:每生产一件产品甲,需用三种原料分别为1,1,0单位;生产一件产品乙,需用三种原料分别为1,2,1单位。每天原料供应的能力分别为6,8,3单位。又知,销售一件产品甲,企业可得利润3万元;销售一件产品乙,企业可得利润4万元。试写出能使利润最大的线性规划模型,并用MATLAB软件计算(写出命令语句,并

18、用MATLAB软件运行)。 解:设生产甲产品吨,乙产品吨。 线性规划模型为: 用MATLAB软件计算该线性规划模型的命令语句为: >> clear; >> C=-[3 4]; >> A=[1 1;1 2;0 1]; >> B=[6;8;3]; >> LB=[0;0]; >> [X,fval]=linprog(C,A,B,[],[],LB) 2. 某物流公司有三种化学产品A1,A2,A3都含有三种化学成分B1,B2,B3,每种产品成分含量及价格(元/斤)如下表,今需要

19、B1成分至少100斤,B2成分至少50斤,B3成分至少80斤,试列出使总成本最小的线性规划模型。 相关情况表 产品含量 成 分 每斤产品的成分含量 A1 A2 A3 B1 B2 B2 0.7 0.2 0.1 0.1 0.3 0.6 0.3 0.4 0.3 产品价格(元/斤) 500 300 400 解:设生产产品公斤, 生产产品公斤, 生产产品公斤, 3. 某物流企业下属家具厂生产桌子和椅子,产品的销路挺好。生产每张桌子的利润为12元,每张椅子的利润为10元。生产每张桌子在该厂的装配中心需要10分钟,在精加工中心需要

20、20分钟;生产每张椅子在装配中心需要14分钟,在精加工中心需要12分钟。该厂装配中心一天可利用的时间不超过1000分钟,精加工中心一天可利用的时间不超过880分钟。假设生产桌子和椅子的材料能保证供给。试写出使企业获得最大利润的线性规划模型,并用MATLAB软件计算(写出命令语句,并用MATLAB软件运行出结果) 解:设生产桌子张,生产椅子张 MATLAB软件的命令语句为: >> clear; >> C=-[12 10]; >> A=[10 14; 20 12]; >> B=[1000;880]; >> LB=[0;0]; >> [X,fval]=linpr

21、og(C,A,B,[],[],LB) 4、某物流企业在一个生产周期内生产甲、乙两种产品,这两种产品分别需要A,B,C,D四种不同的机床加工,这四种机床的可用工时分别为1500,1200,1800,1400.每件甲产品分别需要A,B,C机床加工4工时、2工时、5工时;每件乙产品分别需要A,B,D机床加工3工时、3工时、2工时。又知甲产品每件利润6元,乙产品每件利润8元。试写出能获得最大利润的线性规划问题。 解:设生产甲产品件,乙产品件。 线性规划模型为: 用MATLAB软件计算该

22、线性规划模型的命令语句为: >> clear; >> C=-[6 8]; >> A=[4 3;2 3;5 0;0 2]; >> B=[1500;1200;1800;1400]; >> LB=[0;0]; >> [X,fval]=linprog(C,A,B,[],[],LB) 5、 某物流企业用甲、乙两种原材料生产A,B,C三种产品。企业现有甲原料30吨,乙原料50吨。每吨A产品需要甲原料2吨;每吨B产品需要甲原料1吨,乙原料2吨;每吨C产品需要乙原料4吨。又知每吨A,B,C产品的利润分别为3万元、2万元和0.5万元。试写出能获得最大利润的线性规划问题。 解:设生产A产品吨,B产品吨,C产品吨。 线性规划模型为: 用MATLAB软件计算该线性规划模型的命令语句为: >> clear; >> C=-[3 2 0.5]; >> A=[2 1;2 4]; >> B=[30;50]; >> LB=[0;0;0]; >> [X,fval]=linprog(C,A,B,[],[],LB) 第 10 页 共 10 页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服